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ABSTRACT

Small symmetric dual reflector antennas have low

efficiencies because of conflicting requirements for the

subreflector and feed. Low efficiency is more pronounced for

antenna configurations with main reflector diameters less than

50 times its operating wavelength. The subreflector and feed

geometry must be small to reduce blockage but yet large enough

to be an efficient scatterer. It may be possible to compensate

for this by tuning the feed and subreflector. That is, by

proper choice of the antenna geometry and dimensions and by

using low-blockage feeds, the efficiency may be enhanced.

Existing computer codes have been modified in this thesis

to reflect these changes in antenna feeds in order to optimize

the antenna efficiency. A feed system consisting of a fed

dipole in the presence of parasitic elements has resulted in

an efficiency of 55%. Other untested feed configurations may

produce even higher efficiencies.
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I. INTRODUCTION

A. ANTENNA DESCRIPTION

At high frequencies, an efficient method of focusing microwave

energy into a desired directional beam is by the use of metallic

reflecting surfaces. The reflector shape when using a single

surface is usually parabolic, with a primary feed source located at

the focus and directed onto the reflector area. Such a reflector

may be a section of a surface formed by rotating a parabola about

its axis. A single surface reflector however, does not allow both

the aperture amplitude and phase distribution to be varied

independently. The only means of control over the power

distribution are by varying the focal length of the paraboloid or

the feed pattern. Varying the focal length necessitates changing

the physical dimensions of the antenna. Very large diameter front

fed paraboloids are seldom used because of the long transmission

line runs required to reach the feed. Adding a second reflecting

surface, such as in the Cassegrain (parabola-hyperbola) or

Gregorian (parabola-ellipse) design, leads to a more compact

antenna than a single surface paraboloid of the same diameter. As

discussed by Collin [Ref. 1], complete control over the aperture

field distribution can be achieved by shaping both the subreflector

and the main reflector.

As pointed out by Love [Ref. 2], reflector antennas are truly

wideband devices, capable in principle of operation from radio to

optical frequencies. Surface contours that are of particular

interest at microwave frequencies are derived from the conic
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sections. Conic sections include paraboloids, ellipsoids and

hyperboloids. Axially symmetric reflectors are obtained by rotating

these curves around the focal axis to generate a figure of

revolution. Axially symmetric reflectors can suffer from severe

blockage losses by the subreflector. To keep the subreflector

blockage small requires a small subreflector size. Consequently, to

simultaneously keep the blockage small, yet allow the subdish to be

large enough so that it is an efficient scatterer restricts the

main reflector diameter to be about 50 times the operating

wavelength or greater. However, some recent applications such as

direct broadcast satellites have been cause to re-examine the

capabilities of reflector configurations less than 50 wavelengths,

and perhaps as small as 20 wavelengths.

Another approach to designing efficient dual surface

reflectors is to offset the surfaces to eliminate blocking. This

would however, require more complex surface alignments as well as

more restrictions on the feed. Such a design will also have

degraded cross-polarization performance compared to a symmetric

reflector.

B. CASSEGRAIN DUAL-REFLECTOR SYSTEM

The most common symmetric dual reflector configuration is the

classical Cassegrain antenna shown in Figure (1). Based on the

principles of geometrical optics, a spherical wave originating at

the focus is transformed to a plane wave in the aperture plane.

The feed is located at the accessible focal point and radiates the

energy toward the subreflector which is in turn reflected toward

2



the main reflector. The internal focal point of the hyperboloid

coincides with the focal point of the paraboloid.

Paraboloid

HyperJoloid

(Fe e d!

Figure 1: Cassegrain antenna system.

The effectiveness or efficiency of these antennas is a product

of three factors. The first is the ability of the energy source to

illuminate only the subreflector while minimizing the energy that

radiates elsewhere. This is termed as "spillover efficiency." The

second factor is the ability of the source to illuminate the

parabola evenly, making maximum use of the entire reflector

surface. Such is termed as "illumination efficiency." The third

factor affecting efficiency is the blockage by the feed and

3



subreflector. The feed blocks rays from the subdish that would

normally impinge on the main dish. Similarly, the subreflector

blocks rays reflected from the paraboloid. In a classical

Cassegrain system, the burden of optimizing these efficiencies is

primarily placed upon the feed itself. The ideal feed would have a

radiation pattern which would be uniform within the angle subtended

by the subreflector and would fall abruptly to zero for all angles

outside this region. Such a pattern is, of course not achievable in

practice using feeds of limited extent [Ref. 3].

The blockage introduced by the subreflector as well as the

interaction of the fields between the main reflector and the

subreflector significantly affects the efficiency of the antenna.

A suitable feed pattern coupled with the proper choice of the

geometry and dimensions of the reflectors are required. Therefore,

by proper tuning and by using low-blockage feeds, the antenna

efficiency can be greatly improved.

C. SCOPE OF STUDY

The objective of this thesis is to optimize the performance

(gain) of small, axially symmetric dual reflectors. A combination

of the usual techniques such as shaping, low blockage feeds, and

minimization of subreflector blocking and spillover are considered.

In Chapter II, a study on shaping the reflectors in order to

increase antenna efficiency is delineated. These techniques are

based on geometrical optics principles and only give reliable

results when the reflector dimensions are electrically large.
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In chapter III, the scattered fields are obtained using the

method of moments solution of the E-field integral equation (EFIE)

for a perfectly conducting body of revolution. A computer program

has been developed based on an existing code written by Mautz and

Harrington that computes the electric surface current and far

scattered field of a perfectly conducting body of revolution. The

program was modified to incorporate the desired antenna feed

configuration.

As stated earlier, most of the burden in maximizing the

efficiency on Cassegrain antennas is placed upon the antenna feed

itself. Chapter V discusses some of the comparisons and efficiency

improvements derived from experimental feed reconfigurations. A

systematic approach is taken for evaluating feed radiation patterns

starting from a point feed to a dipole radiating in the presence of

parasitic wires and rings. Figure (2) illustrates the most general

feed configuration included in the main program. It is shown that

the parasitic elements increase the feed directivity, and therefore

reduce spillover loss. An efficient design was achieved by placing

the fed dipole one quarter of a wavelength in front of the main

reflector. This allows the cavity to be completely eliminated if

the rim is replaced by a parasitic ring.

5



FED P•I NT

AXIS OF

".PARAITIC ]ELEMETS

DI[POLE

CAUITY (SURFACE OF RE1UOLUTIOl)

Figure 2: Antenna feed configuration.
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II. ANTENNA OPTIMIZATION APPROACHES

A. DIRECTIVITY AND EFFICIENCY

Radiation from an antenna is not uniformly distributed in all

directions. The directivity function D(0,0) for the antenna

describes the variation of the intensity with the direction in

space. The directivity function is defined by Reference (1)

D ,) power radi ated per unit solid angle
average power radiated per unit solid angle
aP/a@Q

ap' a a
P-P/4= (i

Pr

where Pr is the total radiated power.

The gain of an antenna is similar to the directivity, except

that the total power into the antenna rather than the total

radiated power is used as the reference. As pointed out by Collin

[Ref. 1], the relationship between gain and directivity is given by

the efficiency, n

Pr=1 Pin(2)

where P.n is the total input power.

The directivity can be calculated by integrating the radiation

pattern, which in turn can be determined by integrating the

currents obtained from the method of moments (MM) solution of the

7



electric field integral equation (EFIE). Thus, the directivity,

which is the maximum value of D(0,0), is given by

D, DIRECTIVITY=4r IEI 2  (3)nA

where

"nA=0  E(8,') 2R2sin(8)dOdp (4)

and E(0,0) is the total radiated electric field. The maximum value

of the electric field in the direction of the main beam is Ema.

B. FEED DESIGN REQUIREMENTS

In order to reduce spillover, the radiation from the feed must

be highly directive; nearly all of the energy from the feed must be

reflected by the subdish. For a cavity backed dipole feed to

fulfill this requirement, it must have a prohibitively large

diameter in order to produce a narrow beam. However, a large feed

structure would then cause a substantial blockage of the energy

from the subdish. This presents conflicting requirements necessary

to maximize the antenna performance.

For small reflector systems, an efficient geometry is

illustrated in Figure (3). The focus is located 0.251 from the

paraboloid, which serves as a ground plane for the dipole. This is

a function normally performed by the bottom of the cavity. The

cavity walls give the dipole a more directive pattern than it would

have if it were isolated in free space. But this added directivity

8



mainly comes from the rim of the cavity, not the sidewalls.

Therefore, the entire cavity can be eliminated if a parasitic ring

is added to simulate the cavity rim. Dipoles are added on each side

of the fed dipole to narrow the radiation pattern in the H-plane.

A third parasitic dipole is located 0.25A in front of the feed

dipole to act as director.

MIN RMC101TQ

FEED DIPOL~E

M~AITI~ EJJNG

Figure 3: Cassegrain showing designed feed.

Thus, the three optimization objectives discussed in Chapter I are

achieved. They are:

1. a low-blockage (low surface area) feed is employed

2. high feed directivity is achieved

9



3. the dimensions can be adjusted to fine-tune the efficiency

of a small reflector.

C. SHAPING OF REFLECTORS

The primary objective of the feed design is to concentrate as

much energy as possible toward the subreflector. In practice, the

feed beam shape will have a smooth roll-off in gain at the

subreflector edge, not an abrupt drop as desired. Also, the phase

of the feed field will vary across the subreflector, whereas a

constant phase is desired. These two shortcomings are a consequence

of a high gain feed design.

Galindo [Ref. 4) has demonstrated that it is possible to

compensate for the feed amplitude and phase error by modifying the

shape of the reflector surface. To correct phase requires reshaping

one of the reflector surfaces; to correct both amplitude and phase

requires shaping both reflector surfaces. In this case, only the

phase correction is considered, so the main reflector will be left

unchanged.

The modification of a Cassegrain antenna system is shown in

Figure (4). The power radiation pattern F(O) has a feed phase

center located as shown. For the present application, the path

length r+r'+r'' must be chosen to compensate for the feed phase

error at each angle 0, so that there would be no phase error in the

reflected energy. This would result in the final illumination

across the aperture I(x) to have a uniform phase front.

10



I x

par"a
I spedJy~pd

r,9) k
r

Figure 4: Phase distribution.

Keeping in mind that a constant phase front would be ideal,

the required equation to obtain equal phase path lengths can be

derived from geometry

"k r~y 0sin) + Of(0) = C (constant) (5)

where (x,y) and (r,O) are the coordinates of the points on the main

reflector and the subreflector and of(O) is the feed phase in the

direction of r. If of were a constant, then Equation (5) would be

satisfied by the standard Cassegrain system. When of is not

11



constant over the angle subtended by the subreflector, (r,O) must

be chosen accordingly.

The contours of the corrected subreflector will depend on the

feed phase error profile and the Cassegrain parameters. For a phase

error that increases with 0, the shape can possibly resemble that

shown in Figure (4). The new subreflector shape will cause more

energy to be directed toward the main reflector edge which may or

may not be a problem. If the resulting aperture illumination is not

acceptable, it can be modified by changing the main reflector shape

as described by Galindo (Ref. 4). The effects of diffraction losses

are not considered in this treatment since the analysis only used

geometrical optics. The new surface shapes obtained using this

method can be entered into the computer program discussed in

Chapter IV to calculate the radiation pattern and gain of the

antenna with shaped reflectors.

12



III. KETHOD OF MOMENTS (MM)

A. ELECTRIC FIELD INTEGRAL EQUATION (EFIE)

In the following discussion, the phasor representations of the

time-harmonic fields are used with the ejwt time dependence

suppressed. It is also assumed that the conductors used in the

computations are perfect electric conductors, thus, only electric

currents will be present. In Figure (5), gin which is the incident

field from the feed, induces a current J. which radiates a

scattered field E..

1MECOR SUMFAC

Figure 5: Incident field on perfect
conductor.
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The electric field due to the electric surface current on S is

expressed as

Es (P)=-j•A--- V(V-A) (6)
where S • C

A(P) = J--ALf (x/, yzf) ei-Jkr ds' (7)

A is the magnetic vector potential as described by Mautz and

Harrington [Ref. 5]. Denote the free space Green's function as

G(R, I) - e-Jkl (8)
47cr

where from Figure (5)

.r-- (9)
= [ (x-x') 2+ (y-y') 2+ (z-z') 2]

Since the surface is a perfect conductor, the total tangential

electric field on S must be zero

inc( p) Itan=-Zsltan

-~~~~ -JA- V(V-A) I (10)n

which leads to the general form of the EFIE

E1  P) Itan {j(a~f/fJSG ds/+ .- eV[VffJ G ds] ) Itan (11)
E inc• )I a = j ~ j jT a L I

The subscript tan is used to refer to tangential components of a

vector. S includes all of the antenna surfaces, both feed and

reflector. For long thin wires, the current will only have an axial

14



component and V becomes at/at, where t is the arclength along the

wire. Furthermore, because the current is constant around the wire,

fsfds' reduces to 27afLdt' as shown in Figure (6). The requirement

for the thin wire approximation to hold is that a << A.

s 2a

L ýiT

Figure 6: Thin wire approximation.

The unknown current J. only depends on the primed quantities.

G is a scalar that depends on both the primed and unprimed

quantities. For convenience, define an operator S which will

operate on Js

•eGI) =icLf GJ Jds' + - [ tvf i G ds'] (12)

The last term in Equation (12) can be expressed as

V'fjZsG dsl=ffV. (J8 G) ds' (13)

by use of the vector identity

V'(GsG)=VG*s + G(V.s) (14)

15



where V operates on the unprimed coordinates (x,y,z). The gradient

of G in terms of the two sets of coordinates are related by

VG=-(jk+!) eL-Jk• f= -VG
r 4nr

(15)

whereV'=- a.,+ a a .ax', ay, az'

Using the surface divergence theorem developed by Mautz and

Harrington [Ref. 5], it can be shown that

fv'(JsG) ds' = 0 (16)

Finally, the integro-differential operator 9 can be written as

St(Zs)=ff[jw)[J.IsG- I V[ (V'I-Ts) G] ] ds' (17)S we

and the EFIE becomes

E inc (P) I tn=Sf(JO) I tn (18)

B. SOLUTION OF EFIE USING METHOD OF MOMENTS

To solve the EFIE for a perfect electric conductor the MM is

used. The current is expanded into a series with unknown

coefficients

Si i (19)

where I are the expansion coefficients and J are the basis or

16



expansion functions. From the linearity of Sf, substitution of

Equation (19) into Equation (18) yields

EZnclt•=4 - iit. (4-i) (20)

Now, define a set of testing functions Wk and multiply each testing

function times both sides of the EFIE and integrate. For Galerkin's

method, the testing functions are chosen to be the complex

conjugate of the expansion function (i.e., Wk = J:). The testing

procedure results in N equations which can be written as

Vk= IiZik (21)

for k = 1, 2, ... N, where N is the number of basis functions and

ZIk=ff dsff ds' [jwL1k,',2i- J(Ii) (V-'•k)]G
iw e (2 2 )

Vk~ff lfk-Eds

Written explicitly, Equation (21) is

Vl=Z 1 1 + Z1 2I 2+.. +ZlZIN

v=z•2 1 -+Z 2 2z. 2+ +Z2NIN
(23)

VN= ZN 1 + ZN212 +... + ZMVIN

which in matrix notation becomes

[V = [Z] [I] . (24)

17



To evaluate the impedance matrix, basis functions and testing

functions must be defined. On the antenna surface, two orthogonal

current components are required. They are the 6 and ý components

defined by Mautz and Harrington. On the wires, only a longitudinal

component is needed if the thin wire approximation is used. The

elements of Z are comprised of all possible combinations of basis

and testing functions in Equation (22). Using the subscripts s and

w to denote surface and wire, the impedance matrix will have the

followinq block structure

z 5 SW-

SS IS Sz_. z_. 10• VO
Z • i , V

5 ,

z_ zs z* a z1 •

4W 10- V0  (25)

aSS

*W ZcS ZZ IW VW

Although n can take on values between ±o, it has been terminated at

±M in the above matrix. In practice, when the feed is on the

reflector axis of symmetry, a converged solution can be obtained

with M=l.

18



Each block on the diagonal can be decomposed further according

to basis and testing components

[Znt z2 j[. [iJ(26)
for n=O, il, ±2,, M

where the first subscript refers to the basis function and the

second to the test function.

If the pattern is calculated for the antenna transmitting, the

excitation vector will have only one nonzero value corresponding to

the dipole feed point

V, 0

The unknown expansion coefficients are determined by solving the

matrix in Equation (25) for [I]. To compute the electric field, the

coefficients are used in Equation (19) which in turn is used in

Equations (6) and (7).

19



C. MEASUREMENT MATRICES

The scattered field from the current J. on the body can be

determined using a measurement vector

Rm,measurement= {{ Er. Juds (28)

where Er is a unit radiated plane wave which is weighted by the

current at that point on S.

For a 0 polarized far field measurement

E-=Oe-jkr (29)

=Oe-jk[xu+yv+zw]

where u, v, and w are direction cosines defined as: u = sin0coso,

v = sin0sino and w = cosO. Substitution of Equation (25) into (27)

yields

O-fejkfxu+yv+zwj (*j-d 1  30

The total electric field at the far-field point is the

superposlcio If all surface current contributions

E -- Jkfe-jkR Y•Im (31)
47rR

Similarly, for measuring the p component

l•=ff se-jk [xu+yv+zwJ (ý" J.) ds' (32)

and the electric field would then be

E-Jk4e-jRk1 (33)

20



IV. COMPUTER CODE DESCRIPTION

This chapter discusses the main program CASTRIDIP.F which is

written in FORTRAN. The program utilizes the numerical solution

covered in Chapter III. A listing of the computer code is included

the Appendix. The antenna under consideration is a Cassegrain with

a parabolic main dish and a hyperbolic subdish. The feed consists

of a ring and three parasitic dipoles surrounding the fed dipole.

A. BRIEF DESCRIPTION OF THE MAIN PROGRAM

The program initially generates the sections of bodies of

revolutions which includes the parabolic main reflector, the

hyperbolic subreflector and the circular ring. The detached

elements of the feed are then formulated. The subroutines ZMATSS,

ZMATSW and ZMATWW compute the impedance matrix blocks. The

impedance matrix is then assembled using the subroutines ZASMBO and

ZASMBN. The matrix equation is solved using the subroutines DECOMP

and SOLVE. The plane wave measurement vectors are calculated using

PLANES and PLANEW. The scattered field is then obtained by

performing the sums in Equations (31) and (33).

A flow chart derived from Reference (6) which illustrates the

main program is shown in Figure (7). The input arguments which

describe the geometry of the antenna feed is shown in Figure (8).

21



MAIN PROGRAM (CASTRIDIP.F) SUBROUTINES

1. DEFINE GEOMETRY

2. COMPUTE IMPEDANCE ZMATSS

MATRIX BLOCKS ZMATSW

ZMATWW

3. ASSEMBLE IMPEDANCE ZASMBO

MATRIX BLOCKS ZASMBN

4. SOLVE MATRIX DECOMP

EQUATION SOLVE

5. COMPUTE PLANE WAVE PLANES

MEASUREMENT VECTORS PLANEW

6. OBTAIN THE

SCATTERED FIELD

7. COMPUTE TOTAL FIELD

(FEED AND SCATTERED)

Figure 7: Main program flow chart.
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VW - WINE aDIUS

DIAMETER OF PAMBOLI1D

-Ec

DDIP

\'\'

MIN EECTR
Figure 8: Program parameters.

The input parameters are:

DM = diameter of paraboloid (ground plane)

DS = diameter of subreflector (hyperboloid)

ZC = distance of dipole to ground plane

FOD = focal length to diameter ratio of the paraboloid

ZR = distance of ring from fed dipole along the z axis

RC = radius of ring

SW = ring width

DLN - fej dipole length

PLN = parasitic director dipole length

DDIP = distance between DLN and PLN along the z axis
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AW = radius of dipoles

HLGTH = (2)parasitic (H plane) dipole length

DHP = H plane dipole distance from feed along the y axis

The main program implements the numerical solution described

in Chapter III. All dimensions input to the program are in

wavelengths.

1. GAIN CALCULATION

A separate computer code calculates the gain for the

antenna configuration used in the main program. Far field pattern

integration is employed using Gaussian quadrature. The previously

calculated currents from the main program (saved on disk file

PCURRENT) are used. From the gain, the efficiency of the antenna is

computed using the gain of a uniformly illuminated aperture as a

reference

G
q, efficiency G -34)Go

where

G = 4.rA (35)1 2

and

A=7r 2 .(36)
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A flow chart for the gain program is shown in Figure (9).

GAIN PROGRAM (GAIN.F) ASSOCIATED ARGUMENT

1. READ CURRENT COEFFICIENTS INPUT DATA FROM

AND GEOMETRY CASTRIDIP.F

2. COMPUTE SCATTERED FIELD SUBROUTINES PLANE

AND PLANEW

3. INTEGRATE TO GET GAIN

4. COMPARE TO 4irA/X 2

Figure 9: Gain program flow chart.

B. SUBROUTINES SOLVE AND DECOMP

The subroutines SOLVE and DECOMP are used to solve a system of

N linear equations in N unknowns. The input to DECOMP consists of

N and the N by N matrix of coefficients on the left-hand side of

the matrix equation stored by columns in UL. IPS and UL are the

outputs from DECOMP. These outputs are part of the input arguments

to SOLVE. The rest of the input to SOLVE consists of N and the

column of coefficients on the right-hand side of the matrix

equation stored in B. The subroutine SOLVE puts the solution to the

matrix equation in X. An in-depth explanation of SOLVE and DECOMP

is enumerated by Mautz and Harrington (Ref. 7].
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C. SUBROUTINES PLANES AND PLANEW

In order to calculate the elements of the plane wave receive

vectors, the subroutines PLANES and PLANEW are used. R is the only

output argument to these subroutines; the rest of the arguments are

input arguments. These subroutines are described by Mautz and

Harrington in [Ref. 8].

D. SUBROUTINES ZMATSS, ZXATSW AND ZMATWW

The blocks of the moment matrices in Equation (25) are

calculated by the subroutines ZMAT, ZMATSW and ZMATWW and

assembled. These matrices are stored in Z which is the only output

argument of the subroutine. The rest of the arguments of ZMAT are

inputs. The subroutine ZMAT is described by Mautz and Harrington

[Ref. 8).

E. SUBROUTINES ZASMBO AND ZASMBN

The subroutine ZASMBO assembles mode independent blocks of Z.

The subroutine ZASMBN assembles the mode dependent blocks in Z

where the parameter NM is the mode number of the blocks ZSS and

ZSW. Details of *he subroutine can be found in Reference (8).
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Listed in Table 1, as per Reference (6), is a summary of the

subroutines in the program and the relevant quantities obtained.

TABLE 1: SUMMARY OF THE SUBROUTINES

GENERAL SUBROUTINE QUANTITY CALCULATED

FUNCTION NAME

IMPEDANCE ZMATSS ZttZt, ZttI Zo

MATRIX BLOCKS (or Zss in Eqn. 25)

ZMATSW ztw, ZOW (or Zsw in Eqn. 25)

ZMATWW Z•

RECEIVE PLANES Rte, ROO, RO, RtO

VECTrORS PLANEW R•, Rw

MATRIX DECOMP DECOMPOSES Z MATRIX

OPERATIONS SOLVE SOLVES DECOMPOSED Z MATRIX

ZASMBO ASSEMBLES MODE INDEPENDENT

BLOCKS OF Z MATRIX (Zww)

ZASMBN ASSEMBLES MODE DEPENDENT

BLOCKS OF Z MATRIX

(Z" and Zsw)
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V. DATA ANALYSIS

A. FEED DESIGN STUDY

An antenna pattern with high directivity is essentially the

goal of this thesis. With the feed configuration shown in Figure

(2) and using a parabolic ground plane, several candidate

configurations were examined. The two parasitic dipoles extending

along the y axis of Figure (2) are referred to as the H-plane

dipoles and the other parasitic dipole along the z axis as the E-

plane dipole. Each of the parameters of the feed in Figure (2) was

varied in small increments in order to observe the effect on the

feed pattern.

A dipole above the paraboloid with a parasitic ring has the

pattern shown in Figure (10). The solid line in the figure is the

E-plane (0=0) pattern and the dashed line is the H-plane (0=90°).

The circular grid lines are in 5 dB increments and the angular grid

lines in 15* increments. A typical subreflector will subtend

roughly 60° (±30°). From the plot, it is evident that much of the

feed energy will miss the subreflector.

If a parasitic element is added in front of the feed dipole

and the ring is removed, the patterns shown in Figure (11) result.

The parasitic dipole clearly illustrates the improvement in the

directivity of the feed. A combination of a ring and a parasitic

element resulted in a more directive and symmetric feed pattern as

shown in Figure (12).
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The feed patterns shown in Figures (10) and (11) were run using the

parameters shown in Table 2.

TABLE 2

COMMON PARMETERS USED IN FIGURES (10) AND (11)

radius of ground plane lox

fed dipole distance from ground plane 0.251

ratio of focal length to diameter of ground plane 03

3 0 .................

2C - . .. . . . . . . ............

10
........

. . . ...........

.............

I ...... .........

. ....................

-10 .....

.....................

-20 2*'H-pI&m.

. . . ........... 
.

Figure 11: Feed pattern with one parasitic
element in front of the fed dipole.
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From Figure (8), it is obvious that there are many possible

combinations of feed and reflector components. In an effort to find

the optimum combination, each parameter was varied to examine its

effect on gain while all other parameters were held constant.

30 ..... - ......
.... ....... .

20 - . ..E .... ...

10 ..

. . .. . .....

2. -........ ........... ,........•. ........ ...,....

. . . . .. ......" .. ..... .....

t . ... ......... .... . .....-
. . ...................... . ...........

-10 . ... ....

, ...... • .. .." .,,. , ......

-20. .. .......

H p) ,ne

'.......... ... ... ...... ....-.. ..
-30

Figure 12 Pattern from fed dipole surrounded
by ring and a parasitic director element.

The feed pattern of Figure (12) appeared to be the most

directive of all the feed geometries examined. To reduce the H-

plane sidelobes at 5O*, the addition of two H-plane dipoles was

investigated. The sidelobes were slightly lower as shown in Figure

(13), however; the feed gain was not significantly higher.
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Figure 13: Feed pattern with H-plane dipoles
added.

B. SHAPING INVESTIGATION

One approach to compensating for the feed phase error is to

shape the subreflector as described in Section II.C. The phase of

the radiation pattern in Figure (13) is plotted in Figure (14). It

is essentially constant out to 40° except for a ripple which is

primarily due to scattering from the rim of the main reflector. A

400 subreflector edge angle is about the maximum expected for

antennas with FOD Ž 0.3 and DS 5 71. In light of this data, it is

apparent that subreflector shaping does not offer any advantage.

Therefore, shaping was not incorporated into the final antenna design.
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Figure 14: Phase of the feed radiation pattern.

C. INTEGRATION OF THE FEED DESIGN INTO THE REFLECTOR

The feed pattern study results provided a starting point for

the feed dimensions used in the main program. It should be noted

that the presence of a subreflector will affect the feed pattern.

The reflected wave from the subreflector will modify the current on

the feed structures as well as the main reflector. Thus, the

optimum geometry for the feed when it is radiating in free space

may not be the optimum when the subreflector is present. However,

it was found that readjusting the feed geometry from the original
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values had little effect on the overall antenna gain. More

important was the subreflector location and shape. A series of

calculations were done for various subreflector diameters and

eccentricities. The results are summarized in Figure (15).
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Figure IS: Relative ef fects of changing some parameters to the
antenna performance (DM=201).
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An interesting result of Figure (15) is that it is possible to

increase the efficiency by increasing the subreflector area, even

when the subreflector-to-main reflector diameter is as large as

1/3. This is the effect of tuning, i.e., adjusting the geometry so

that the interactions between the reflectors add constructively

rather than destructively. The trend for a small reflector antenna

can be exactly opposite that predicted by geometrical optics.

As an example of the improvement that can be achieved, the

pattern of a 201 Cassegrain antenna with a single dipole feed (no

parasitic dipoles and no ring) is illustrated in Figure (16) for

reference. The efficiency is only 26%, primarily due to the large

amount of spillover between 30° and 60°. To improve the efficiency,

the feed design obtained in the last section was incorporated into

the Cassegrain design. After a slight adjustment in the feed

parameters, a maximum efficiency of 55.6% was achieved with a 71

subreflector diameter. The final dimensions are given in Table 3

and the E- and H-plane radiation patterns in Figure (17). The

efficiency of the basic reflector/feed configuration is

approximately 50%. An increase of about 4% was obtained by

readjusting the feed parameters, primarily the location of the

ring. A further slight increase in the efficiency (z0.8%)was due to

the addition of the H-plane parasitic dipoles.
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DM=20; DS-7; FOD-0.325; DLN-0.5; ZC-0.25

-10 E-plane
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E
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-40-
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ongi. [n degreso

Figure 16: Antenna pattern without parasitic dipole and ring on'
f eed.

36



TABLE 3

OPTIMUM PARAMETER VALUES (for Figure 17)

DM 201 DLN 0.5),

DS 71 PLN 0.441

ZC 0. 251 DDIP 0.251

FOD 0.325), AW 0. 0011

RC 1. 651 HLGTH 0.2).

ZR 0.251 DHP 0.3).

SW 0.151 ZHP 01
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Figure 17: Field pattern for parameters of Table 3.
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VI. SUMKARY AND CONCLUSIONS

The introduction of a mechanically simple low-blockage feed

for small symmetric dual-reflector antennas has significantly

improved its performance. From the computed results, it is apparent

that in order to maximize the antenna gain, an E-plane dipole

shorter than the fed dipole (director) is required. The distance of

the E-plane dipole was found to be optimal at 0.25 wavelength in

front of the fed dipole. Likewise, the distance of the fed dipole

from the main dish has to be 0.25 wavelengths to obtain maximum

gain. The ring improves the antenna's directivity but the optimum

diameter and location of the ring largely depend upon the

interactions of the ring to the other feed structures. The

diameter of the ring may or may not be less than the length of the

fed dipole. A shorter diameter however, may pose a problem in the

fabrication process. The ring has to be electrically isolated from

the feed and yet current continuity must be maintained on the ring.

The antenna performance generally behaved as would be expected

based on the traditional ray optics approach to reflector design.

But because the computer code is more accurate than ray optics, it

was possible to tune the antenna geometry to minimize the loss in

gain due to the surface interactions. The calculations showed that

once an optimum gain had been achieved, small adjustments in the

antenna feed geometry did not have a significant neyative impact on

antenna performance. This indicates that the design is tolerant to

perturbations in the dimensions due to manufacturing and assembly

errors. It may be possible that other combinations of feed
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parameters are more efficient; an exhaustive study was not

performed. It was determined that if there was any improvement in

gain due to subreflector shaping (to compensate for feed phase

error), the increase in complexity did not merit its use.

To summarize, a lightweight, compact microwave antenna design

has been presented. By tuning the antenna components, an efficiency

of 55% has been achieved, up from approximately 30% for a standard

Cassegrain design. An antenna of this size with over 50% efficiency

would be a viable candidate for such application as direct

broadcast satellites and passive sensors.
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APPENDIX

C PROGRAM CAS ')IP.F
C
C RADIATION PATTERN OF A CASSEGRAIN WITH A PARASITIC RING DIPOLE
C FEED. THE DIPOLE LIES IN THE FOCAL PLANE AND THE CAVITY IS A
C DISTANCE ZC BEHIND IT. (This program utilizes a parasitic
C dipole, two h-plane parasitic dipoles and a ring for its feed
C configuration.)
C
C ICALC=O CALC CURRENTS AND FIELD
C =1 CALC FIELDS ONLY (READ CURRENTS)
C IMP=O PERFECTLY CONDUCTING SURFACES
C =1 SOME NONZERO SURFACE RESISTANCE
C ICWRT=O WRITE CURRENT COEFFICIENTS TO FILE pcurrent
C IRES=O READ RESISTIVE CORRECTIONS
C

COMPLEX EPET,Z(500000),RS(1000),RW(400),B(700),C(700),U,UC
COMPLEX ZLO(400),ZL(1500),EC,EX,ZSS(50000)
COMPLEX EXPI,EXP2,ZSW(50000),ZWW(10000)
COMPLEX CEXP, CONJG, CMPLX, ET1, ET2,EP1, EP2, ETW, EPW
DIMENSION RH(400),ZH(400),XT(4),AT(4),IPS(700),NWI(4)
DIMENSION A(400),X(400),EXP(800),ANG(800),ECP(800)
DIMENSION ECV(800),EXV(800),PHC(800),PHX(800),NW2(4)
DIMENSION XX(41),YY(41),XH(400),YH(400),PHA(400)
DATA PI,START,STOP,DT/3.14159,0.,180.,l./,ICWRT/O/,IRES/l/
DATA ICALC/O/, IPRINT/O/, IMP/O/, ITEST/l/
DATA nt/2/,xt(l),at(1)/.5773503,l./

c data nt/4/,xt(l),xt(2),at(l),at(2)/.33998104,.8611363115,
c * .6521451548,.3478548451/

OPEN(l,FILE='outgaus' ,status='old')
READ(1,*) NPHI
DO 3 K=l,NPHI
READ(1,*) X(K) ,A(K)

3 CONTINUE
RAD=PI/180.
BK=2. *PI
U=(o. ,1.)

UO=(0.,0.)
UC=-U/4./PI
NT2=NT/2
DO 1 K=l,NT2
Kl=NT-K+1
AT(Kl) =AT(K)
XT(Kl) =XT(K)

1 XT (K) =-XT (K)
C
C NP10 = NUMBER OF PARABOLOID POINTS
C NP11 = NUMBER OF HYPERBOLOID POINTS
C NP12 = NUMBER OF RING POINTS
C

MODES=l
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MHI=MODES+ 1
NBLOCK=2 *MODES+ 1
NWIRES= 1
WRITE(6,*) 'ENTER START,STOP,DT'
READ(5,*) START,STOP,DT
NP1O=61
NP11=31
NP12=3
WRITE(6,*) 'ENTER PARA (NP1O), HYPER(NP11) AND SW(NP12) PTS'
READ(5,*) NP1O,NP11,NP12
NP1=NP1O+NP1 1+NP12
DM=20.
RO=DM/2.
DS=5.
Z C=. 25
FOD=. 3
RC=O.5
SW=. 05
WRITE(6,*) 'ENTER DM, DS, ZC (>0), FOD, RC, ZR AND SW'
READ(5,*) DM,DS,ZC,FOD,RC,ZR,SW
FM=FOD*DM
FC=FM-ZC

C
C GENERATE PARABOLOID CONTOUR -- ONLY DO OUT TO RADIUS RGP
C

PHIV=2. *ATAN(1./4 ./FOD)
FNM=FLOAT (NP1O-1)
DO 50 I=1,NP10
TH=FLOAT (I-i) *PHIV/FNM
RM=2.*FM/(1.+COS(TH))
ZH (I) =-RM*COS (TH) *BK+FC*BK
RH(I)=RM*SIN(TH) *BK

50 CONTINUE
C
C HYPERBOLOID (SUBREFLECTOR) CONTOUR (FC IS 2.*C)
C

PHIR=ATAN(1./(2.*FC/DS-1./TAN(PHIV)))
ECC=SIN( (PHIV+PHIR)/2. )/SIN( (PHIV-PHIR)/2.)
AA=FC/2 ./ECC
BB=AA*SQRT(ECC**2-1.)
DO 5 I=1,NP11
THETA=FLOAT(I-1) *PHIR/FLOAT(NP11-1)
RR=A*(ECC**2-1.)/(1.-ECC*COS (THETA) )*BK
ZH(I+NP1O) =-RR*COS (THETA)
RH (I+NP1O) =-RR*SIN (THETA)

5 CONTINUE
C
C NEXT THE SIDEWALLS
C

DSW=SW/FLOAT (NP12-1)
ZRBK=ZR* BK
IF(NP12.NE.O) THEN
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DO 7 I=1,NP12
II=NP11+NP1O+I
XH(II)=O.
YH(II)=0.
RH(II)=RC*BK
ZH(II)=FLOAT(I-1) *DSW*BK+ZRBK

*7 PHA(II)=0.
ENDIF
NP1=NP1O+NP11+NP12

* C
C DIPOLE ANTENNA POINTS IN WAVELENGTHS: AW= RADIUS; NP2= NUMBER
C OF POINTS (=NP21+NP22; NP21 MUST BE ODD); DLGTH= LENGTH;
C PLGTH IS PARASITIC ELEMENT LENGTH.
C

AW=. 001
DLGTH=. 45
PLGTH=. 44
WRITE(6,*) 'ENTER DLN, PLN, DDIP AND AW'
READ(5,*) DLGTH,PLGTH,DDIP,AW
CENT=DLGTH/2.
AK=AW* BK
NP21=11
NP22=0
WRITE(6,*) 'ENTER NP21 AND NP22 (ONLY 1 DIP IF NP22=O)'
READ(5,*) NP21,NP22
NW1 (1) =NP1+1
NW2 (1) =NP1+NP21
NP2=NP2 1+NP2 2
DEL=-DLGTH/FLOAT (NP2 1-1)
DO 10 I=1,NP21
II=NP1+I
YH(II)=0.
ZH(II)=O.
XH(II)=BK* (FLOAT(I-1) *DEL-CENT)
RH(II)=SQRT(XH(II) **2+YH(II) **2)
PRA(II)=ATAN2(YH(II) ,XH(II)+1.E-6)

10 CONTINUE
IF(NP22.NE.0) THEN
NWIRES=2
NW1(2)=NP1+NP21+1
NW2 (2) =NP1+NP2 1+NP2 2
DEL=-PLGTH/FLOAT (NP22-1)
CENT=PLGTH/2.
DO 11 I=1,NP22
II=NP1+NP2 1+1
YH(II)=0.
ZH (II) =DDIP*BK
XH(II)=BK*(FLOAT(I-1) *DEL-CENT)
RH(II)=SQRT(XH(II) **2+YH(II) **2)
PHA(II)=ATAN2(YH(II) ,XH(II)+1.E-6)

11 CONTINUE
ENDI F
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C NP23=NUMBER OF H-PLANE DIPOLE POINTS
C HLGTH=H-PLANE DIPOLE LENGTH
C DHP=-H-PLANE DIPOLE DISTANCE FROM FEED
C ZHP=-H-PLANE DIPOLE Z COORDINATE
C NP24=NUMBER OF POINTS FOR THE OTHER H-PLANE DIPOLE

NP23=7
NP24=7
HLGTH=. 2
DHP=.2
ZHP-. 001
WRITE(6,*) 'ENTER NUMBER OF POINTS PER H-PLANE DIPOLE'
WRITE(6,*) '(0 FOR NO H-PLANE PARASITIC DIPOLES)'
READ(5,*) NP23
IF(NP23.NE.O) THEN
WRITE(6,*) 'H-PLANE DIPOLE LENGTH, DISTANCE AND LOCATION'
READ(5,*) HLGTH,DHP,ZHP
NWIRES=NWIRES+ 2
NP24=NP2 3
NP2=NP2 1+NP22+NP2 3+NP24
NW1 (3) =NP1+NP21+NP22+1
NW2 (3) =NP1+NP21+NP22+NP23
NW1 (4) =NP1+NP21+NP22+NP23+1
NW2 (4) =NP1+NP21+NP22+NP23+NP24
DEL=-HLGTH/FLOAT (NP23-1)
CENT=HLGTH/2.
DO 12 I=1,NP23
I1=NP1+NP2 1+NP22+I
ZH (Ii)=ZHP*BK
YH (Ii)=DHP*BK
XH (Ii)=BK* (FLOAT (I-i) *DEL-CENT)
RH(I1)=SQRT(XH(I1) **2+YH(I1) **2)
PHA(I1)=ATAN2(YH(I1) ,XH(I1)+1.E-6)
12=Il+NP23
ZH(12) =ZHP*BK
YH(12) =-DHP*BK
XH(12)=BK* (FLOAT(I-1) *DEL-CENT)
RH(12)=SQRT(XH(I2) **2+YH(I2) **2)
PHA(12)=ATAN2(YH(I2) ,XH(I2)+l.E-6)

12 CONTINUE
ENDIF
CLOSE( 1)
NP=-NP1+NP2
OPEN (8, file= 'outcascav')
WRITE(8, 8000) DM, DS, FC,ECC,FOD, PHIR/RAD,PHIV/RAD,NP1O,NP11
*,RC,SW,NP12,DLGTH,PLGTH,DDIP,NP2,AW,MODES,NT,NPHI
IF(NP23 .NE. 0) WRITE(8,D8001) HLGTH,DHP, ZHP,NP23

8000 FORMAT(//,5X,'*** CASSEGRAIN REFLECTOR SYSTEM ***',//,5X,
*'REFLECTOR PARAMETERS (LENGTHS IN WAVELENGTHS):',/,5X,
*'MAIN REFL DIA=',F8.3,/,5X,'SUB REFL DIA=',F8.3,/,5X,
"* '2*C=',F8.3,/,5X,'ECCENTRICITY=',F8.4,/,5X,
"* 'F/D=-',F8.4,/,5X,'PHIR (DEG)=',F8.2,/,5X,
"* 'PHIV (DEG)=',F8.2,/,5X,'MAIN REFL POINTS (NP11)=',14,/,
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* 5X,'SUB REFL POINTS (NP12)=',14,/,5X,/,5X,
* 'RING RADIUS=',F8.3,/,5X,'SIDEWALL LENGTH=',F8.3,/,5X,
* 'NUMBER OF RING POINTS (NP12)=',I4,//,5X,
* 'DIPOLE PARAMETERS:',/,5X,'FED DIPOLE LENGTH=',F8.3,/,5X,
* 'PARASITIC DIPOLE LENGTH=',F8.3,/,5X,'SPACING=',F8.3,/,5X,
* 'NUMBER OF DIPOLE POINTS =',14,/,5X,'RADIUS OF DIPOLE=',
* F8.4,//,5X,INUMBER OF AZIMUTHAL MODES=',I3,/,5X,'NT=',13,
* /,5X,'NPHI=',13)

8001 FORMAT(/,5X,'H-PLANE DIPOLE LENGTH=',F8.3,/,5X,
* 'H-PLANE DIPOLE DISTANCE FROM AXIS=',F8.3,/,5X,

I 'Z POSITION OF H-FIELD DIPOLE=' F8. 3,/, 5X, I NUMBER OF H-FIELD
*DIPOLE POINTS=',I3)
IF(ISEG.EQ.O) WRITE(8,1300)

1300 FORMAT(/,5X,'INDEX',8X,'Z(I)',1OX,'RHO(I)',8x,'ZSURF')
IF((IMP.EQ.0).OR.(IRES.NE.O)) GO TO 70
OPEN(9,FILE='difdat')
READ(9,*) ID
WRITE(6,*) 'ID=',ID
DO 75 I=1,ID
READ(9,*) II,RI,YY(I),DUM
IF(YY(I).LT.0.) YY(I)=0.

75 CONTINUE
XXI=1 ./FLOAT(ID-1)
DO 15 II=1,ID
XX (II) =XXI*FLOAT (II-1)

15 CONTINUE
WRITE(6,*) 'SURFACE IMPEDANCE VALUES.READ'

70 CONTINUE
DO 52 I=1,NP1
IF(ABS(ZH(I)).LT..O01) ZH(I)=0.
IF(ABS(RH(I)).LT..001) RH(I)=0.
ZLO (I) =(0. , 0.)
ZHB=ZH (I) /BK
RHB=RH (I) /BK

c if(rhb.ge.10.) zlO(i)=(.2,0.)
C
C NONZERO SURFACE IMPEDANCES IF IMP > 0
C

IF((IMP.EQ.O).OR.(IRES.NE.O)) GO TO 51
IF(I.GT.NP1O) GO TO 51

C
C USE THE EXACT RESISTIVE CORRECTIONS -- INTERPOLATE BETWEEN
C DATA POINTS.
C

UU=RHB/RO
CALL INTERP(UU,VV,XX,YY,ID)
Z LO (I) =VV

51 CONTINUE
WRITE(8,8004) I,ZHB,RHB,ZLO(I)

52 CONTINUE
8004 FORMAT(6X,14 ,4X,F8. 3,8XF8. 3, 6X,2F8.4)

WRITE(8, 1310)
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1310 FORMAT(/,5X, 'DIPOLE COORDINATES:',//,
*5X,'INDEX',8X,'Z(I)1,10X,'RHO(I)',1OX,'PHI PLN')
DO 53 I=NP1+1,NP
IF(ABS(ZH(I)) .LT. .001) ZH(I)=0.
IF(ABS(RH(I)).LT..O01) RH(I)=o.
ZHB--ZH (I) /BK
RHB=-RH(I)/BK
PHB--PHA (I) /RAD

53 WRITE(8,8005) I,ZHB,RHB,PHB
8005 FORMAT(6X,I4,4X,F8.3,8X,F8. 3,9X,F8.2)
799 CONTINUE

IF(ITEST.EQ.0) GO TO 9998
write(6,A') 'geometry defined'

C
C DEFINE DIMENSIONS OF THE IMPEDANCE MATRIX BLOCKS
C

MT1=NP1-2
MP1=NP1- 1
N=MP1+MT 1
MT2=NP2 -2
NSURF=NBLOCK*N
NSW=NSURF+MT2
NROW=NSW
WRITE(6,*) 'NP1,NP2,NSURF,NROW=' ,NP1,NP2,NSURF,NROW
WRITE(6,*) 'MT2 SHOULD BE ODD -- MT2=',MT2
IF(ITEST.EQ.0) GO TO 9998
IF(ICALC.EQ.0) THEN

C
C COMPUTE IMPEDANCE MATRIX ELEMENTS
C

CALL ZMATWW(NWIRES,NW1,NW2,XH,YH,RH,ZH,NT,XT,AT,AK, ZWW)
CALL ZASMBO (NP1, NP2, MODES, Z, ZWW)
write(6,*) 'wire impedance computed'
IF(IMP.NE.O) THEN
CALL ZLODAD(NP1,RH,ZH,ZLO,ZL)
WRITE(6,*) 'RESISTIVE SURFACE IMPEDANCE MATRIX COMPUTED'
ENDIF
DO 400 M=1,MHI
NM=M-1
CALL ZMATSS (NM,NM,NP1O,NP11,NP12 ,NPHI ,NT,RH, ZH,X,A,XT,AT, ZSS)

c if(nm.ne.0) then
c write(8,*) 'print zss'
c do 669 kk=1,n
c do 669 jj=1,n
c j k=j j+ (kk- 1) *n
c669 write(8,*) nm,jj,kk,zss(jk)
c endif

IF(IMP.NE.O) CALL ZTOT(MT1,MP1,ZL,ZSS)
CALL ZMATSW(NWIRES,NW1,NW2,NP1O,NP11,NP12 ,XH,YH,RH, ZH,
*NT,XT,AT,NPHI,X,A,NM,AK,ZSW)

c if(nm.ne.0) then
c write(8,*) 'printing positive zsw'
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c do 666 kk=l,mt2
c do 666 jj=l,n
c j k=j j +(kk-l) *r
c666 write(8,*) nmu,jj,kk,zsw(jk)
c endif

CALL ZASMBN(NP1,NP2,HODES,NM,Z,ZSS,ZSW)
IF(NM.EQ.0) GO TO 400
NMN= -NM
CALL ZMATSW(NWJRES,NW1,NW2,NP1O,NP11,NP12,XH,YH.P!-', ZH,
*NT,XT,AT,NPHI,X,A,NMN,AX,ZSW)

CALL ZASMBN(NP1,NP2,MODES,NMN,Z,ZSS,ZSW)
400 CONTINUE

write(6,*) 'z filled'
CALL DECOMP(NROW, IPS, Z)
write(6,*) 1z decomposed'

C
C EXCITATION ELEMENTS (NONZERO FOR THE DIPOLE ONLY)
C

DO 40 I=l,NROW
40 B(I)=(0.,O.)

I0=NSURF+ (NP21-1) /2
B(I0)=(l. ,0.)
CALL SOLVE(NROW,IPS,Z,B,C)
do 665 ii=1,nrow

665 write(6,*) ii,c(ii)
IF((ICWRT.EQ.O) .AND. (ICALC.EQ.0)) THEN

C
C WRITE CURRENTS ON DISC FOR PATTERN INTEGRATION
c (program 'cavarchint.f')
C

OPEN(3, file= 'pcurrert')
WRITE(3,*) DM,AW,ZC,RC,DS,NP1,NP2,NBLOCK,NWIRES
WRITE(3,*) NP,MT1,MP1,N,MT2,NSURF,NROW,MHI,MODES
WRITE(3,*) (XH(I),I=l,NP)
WRITE(3,*) (yh(I),I=1,NP)
WRITE(3,*) (zh(I),I=1,NP)
WRITE(3,*) (rh(I),I=l,NP)
WRITE(3,*) (pha(I),I=1,NP)
WRITE(3,*) (NWl(I) ,I=1,NWIRES)
WRITE(3,*) (NW2(I),I=l,NWIRES)
WRITE(3,*) (C(i),I=l,NROW)

ENDIF
ENDIF

C
C IF ICALC.NE.0 THEN READ CURRENT COEFFICIENTS FROM DISK FILE
C

IF(ICALC.NE.0) THEN
OPEN(3, file='pcurrent' ,STATUS='OLD')
READ(3, *) DMX,AWX, ZCX,RCX, DSX,NP1X,NP2X,NBLX,NWX
READ(3,*) NPX,MT1X,MP1X,NX,MT2X,NSX,NRX,MHIX,MODESX
READ(3,*) (xh(i),il,flp)
READ(3,*) (yh(i),i=lrip)
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READ(3,*) (zh(i),i=1,np)
READ(3,*) (rh(i),i=1,np)
READ(3,*) (pha(i),i=1,rip)
READ(3,*) (nwl(i),i1l,nwires)
READ(3,*) (nw2(i) ,i=1,nwires)
READ(3,*) (c(i),i=1,nrow)
CLOSE (3 )
write(6,*) 'data read from pcurrent'
do 909 i=1,np

909 write(6,*) 'i,rh,zh=',i,rh(i)/bk,zh(i)/bk
ENDIF
IT=INT ((STOP-START) /DT) +1

C
C RECEIVER PHI CUTS: DO 0 AND 90 (E- AND H- PLANES)
C

DO 501 IP--1,2
ECX=1.e-l0
PHRO=0.
IF(IP.EQ.2) PHRO=RAD*90.
DO 500 I=1,IT
THETA=FLOAT (I-i) *DT+START
THR=THETA *RAD
PHR=PHRO
IF(THETA.LE.180.) GO TO 99
THR= (360. -THETA) *RAD
PHR=PHRO+PI

99 CONTINUE
c write(6, *) Itheta,phi=' ,theta,phr/rad

ET1=UO
ET2=UO
EP1=U 0
EP2 =UO
ETW=UO
EPW=UO

C
C DIPOLE FIELD
C

CALL PLANEW(NWIRES,NW1,NW2 ,NP1,NP2 ,XH,YH, ZH,THR, PHR,RW)
DO 210 L=1l,MT2
ETW=ETW+RW (L) *C (L+NSURF)

210 EPW=EPW+RW(L+MT2) *C(L+NSURF)
C
C REFLECTOR AND CAVITY FIELD CONTRIBUTIONS
C

DO 300 M=1,MHI
NI4=V,-1
EXP1=CEXP(CMPLX(0. ,FLOAT (NM) *PHR))
EXP2=CONJG (EXPi)
CALL PLANES (NM,NPIO,NP11,NP12,NT,RH, ZH,XT,AT,THR,RS)
NTOP1=MODES -NM
NTOP2=NBLOCK- (NTOP1+ 1)
NS2=NTOP1*N
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NS 1=NTOP2 *N
DO 250 L=1lMT1
ET1=ET1+RS (L) *C(L+NS1) *EXP1
EP1=EP1+RS (L+N) *C(L+NS1) *EXP1
IF(NM.EQ.0) GO TO 250
ET1=ET1+RS (L) *C(L.NS2) *EXP2
EP1=EP1-RS (L+N) *C(L+NS2) *EXP2

250 CONTINUE
DO 260 L=1l,MP1
ET2=ET2+RS (L+MT1) *C(L+NS1+MT1) *EXP1
EP2=EP2+RS (L+MT1+N) *C(L+NS1+M(1) *EXP1
IF(NH.EQ.0) GO TO 260
ET2=ET2-RS (L+MT1) *C(L+NS2+MT 1) *EXP2
EP2=EP2+RS (L+MT1+N) *C(L+NS2+Mf 1) *EXP2

260 CONTINUE
300 CONTINUE

ET=UC* (ET1+ET2+ETW)
EP=UC* (EP1+EP2+EPW)
EC=ET
EX=EP
ECV (I) =CABS (EC)
EXV (I) =CABS (EX)
ECR=REAL (EC)
ECI=AIMAG (EC)
EXR=REAL (EX)
EXI=AIMAG (EX)
PHC(I)=ATAN2 (ECI,ECR+1.e-10)/RAD
PHX(I)=ATAN2 (EXI,EXR+1.e-10)/RAD
ANG (I) =THETA
ECX=AMAX1(ECX,ECV(I) ,EXV(I))

500 CONTINUE
WRITE(8,103) PHR/RAD,ECX

103 FORMAT(/,5X, $PHI OF RECEIVER (DEG)=',F8.2,/,5X,
*'MAXIMUEM FIELD VALUE (V/M)=',E15.5)
DO 600 I=1,IT
ECP(I)=(ECV(I)/ECX) **2
EXP(I)=(EXV(I)/ECX) **2
ECP(I)=AMAX1(ECP(I) ,.00001)
EXP(I)=AMAX1(EXP(I) ,.00001)
ECP(I)=10.*ALOG1O(ECP(I))
EXP(I)=10.*ALOG1o(EXP(I))

600 CONTINUE
IF(IPRINT.NE.0) GO TO 310
WRITE(8,5015)

5015 FORMAT(///,7X,'ANGLE',15X,'CO-POL',25X,'X-POLI,/,7X,
*1 (DEG) ',4X,2(' (VOLTS) ',4X, '(DEG) ',3X, '(DB-REL) ',4X))
DO 9000 L=1l,IT
WRITE(8,5016) ANG(L),ECV(L),PHC(L),ECP(L),EXV(L),PHX(L)
*,EXP(L)

5016 FORMAT(5X,F6.1,3X,2(F8.4,3X,F7.1,3XF7.2,3X))
9000 CONTINUE
310 CONTINUE
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IF(IP.EQ.1) THEN
OPEN(2, file='carxg.m')
OPEN(3, file='ccpole.m')
OPEN(4,file='cxpole.m')
DO 9097 I=1,IT
WRITE(2,5019) ANG(I)
WRITE(3,5019) ECP(I)

9097 WRITE(4,5019) EXP(I)
CLOSE (2)
CLOSE (3)
CLOSE (4)
ENDIF
IF(IP.EQ.2) THEN
OPEN(3, file='ccpolh.m')
OPEN(4, file='cxpolh.m')
DO 9098 I=1,IT
WRITE(3,5019) ECP(I)

9098 WRITE(4,5019) EXP(I)
CLOSE (3)
CLOSE (4)
ENDIF

501 CONTINUE
5019 FORMAT(F8.3)
9998 STOP

END
SUBROUTINE SOLVE (N, IPS ,UL, B, X)
COMPLEX UL(500000) ,B(700) ,X(700) ,SUM
DIMENSION IPS(700)
NP1=N+1
IP=IPS (1)
X(1)=B(IP)
DO 2 I=2,N
IP=IPS (I)
I PB=I P
IM1=I-1
SUM= (0., 0.)
DO 1 J=1,IM1
SUM=SUM+UL(IP) *X(J)

1 IP=-IP+N
2 X (I) =B (IPB) -SUM

K2=N* (N-i)
IP=-IPS(N)+K2
X(N)=X(N)/UL(IP)
DO 4 IBACK=2,N
I=NP1-IBACK
K2=K2 -N
IPI=IPS (I) +K2
Ip1=I+1
SUM= (0., 0.)
I P= I P
DO 3 J=IP1,N
IP=IP+N
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3 SUM=SUM+UL(IP) *X(J)
4 X(I)=(X(I)-StJM)/UL(IPI)
RETURN
END
SUBROUTINE DECOMP(N, IPS,UL)
COMPLEX UL(500000) ,PIVOT,EM
DIMENSION SCL(700) ,IPS(700)
DO 5 I=1,N
IPS(I)=I
RN=O.
J1=I
DO 2 J=1,N
ULM=ABS(REAL(UL(J1) ))+ABS(AIMAG(UL(J1)))
J1=J1+N
IF(RN-ULM) 1,2,2

1 RN=ULM
2 CONTINUE
SCL (I) =1./IRN

5 CONTINUE
NM1=N- 1
K2=0
DO 17 K=1,NM1
BIG=O.
DO 11 I=K,N
IP=-IPS(I)
I PK=I P+K2
SIZE=(ABS(REAL(UL(IPK)) )+ABS(AIMAG(UL(IPK) ) ))*SCL(IP)
IF(SIZE-BIG) 11,11,10

10 BIG=SIZE
I PV=I

11 CONTINUE
IF(IPV-K) 14,15,14

14 J=IPS(K)
IPS (K) =11'S (IPV)
I PS (IPV) =J

15 KPP=IPS(K)+K2
PIVOT=UL (KPP)
KP1=K+1
DO 16 I=KP1,N
KP=KPP
IP=-IPS (I) +K2
EM=-UL (IP) /PIVOT

18 UL(IP)=-EM
DO 16 J=KP1,N
I P-I P+N
KP=-KP+N
UL(IP) =UL(IP) +EM*UL(KP)

16 CONTINUE
K2=K2+N

17 CONTINUE
RETURN
END
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FUNCTION BLOG(X)
IF(X.GT..1) GO TO 1
X2=X*X
BLOG-( (.075*X2-. 1666667) *X2+1.) *X
RETURN

1 BLOG=ALOG(X+SQRT(1.+X*X))
RETURN
END
SUBROUTINE ZLOAD(NP,RH,ZH,ZO,Z)

C
C COMPUTES IMPEDANCE MATRIX ELEMENTS FOR LOADED BODIES OF REV
C ZO(I) IS THE SURF IMPEDANCE OF THE ITH SEGMENT (NP-i SEGMENTS)
C Z(.) ARE THE IMPEDANCE MATRIX TERMS (TRIDIAGONAL FOR T-T
C SUBMATRIX; DIAGONAL FOR P-P SUBMATRIX). STORED IN COL VECTOR.
C

COMPLEX Cl,C2,ZO(400) ,Z(1500) ,X1,X2,X3,Y1,Y2,Y3,FN(400)
COMPLEX U1,U2,U3,XI,YI
DIMENSION RH(400),ZH(400),RS(400),D(400),SV(400)
PI=3.14159
MT=NP-2
MP=-NP- 1
N=MT+MP
DO 10 IP=-2,NP
II=IP-1
DR=RH(IP) -RH(II)
DZ=ZH (IP) -ZH (II)
D(II) =SQRT(DR*DR+DZ*DZ)
SV(II)=DR/D(II)
RS(II)=.5*(RH(IP)+RH(II))
DS=D(II) *SV(II)/2.
Q1=RS (II) +DS
Q2=RS (II) -DS
FN (II)= 1.
IF((ABS(Q2) .GT.1.E-6) .AND. (ABS(Q1) .GT.1.E-6))
*FN(II)=ALOG(Q1/Q2)

10 CONTINUE
LO=MT* 3-2
DO 20 I=1,MP
C1=PI*ZO (I)
IF(I.EQ.MP) GO TO 80
KI=2
IF(I.EQ.1) KI=1
IF(I.EQ.MT) KI=3
11=1+1
C2=PI*Z0 (II)
A=SV(I)
IF(ABS(A).LT.1.E-6) GO TO 41
Xl=C1*FN(I)/2 ./A
X2=C1*2./A*(1.-RS(I) *FN(I)/D(I)/A)
X3=-X2*RS(I)/D(I)/A
GO TO 42

41 CONTINUE
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X1=C 1/ 2./RS (I) * D(I)
X2= (0. , 0. )
X3=Cl*D(I)/6./RS(I)

42 CONTINUE
A=SV(II)
IF(ABS(A).LT.1.E-6) GO TO 45

* ~Y1=C2*FN (11)/2./A
Y2=C2*2./A*(1.-RS(II) *FN(II)/D(II)/A)

GO TO 40
45 CONTINUE

Y1=C2/2 ./RS (II) *D(II)
Y2=(O., 0.)
Y3=C2*D(II)/6./RS (II)

40 CONTINUE
C
C DEFINE TRIDIAGONAL ELEMENTS FOR T-T SUBMATRIX (STORED IN COLS)
C (Ul- DIAG; U2- LOWER; U3- UPPER)
C

XI=X1+X2+X3
YI=Y1-Y2+Y3
IF(KI.EQ.1) XI=C1/SV(I)

C IF(KI.EQ.3) YI=C2/SV(II)
U1=XI+YI
U2=Xl-X3
U3=Y1-Y3
L=-2+(I-2) *3
IF(KI.EQ.1) L=0O
LI=L+l
L2=L+2
L3=L+3
go to (50,60,70),ki

50 Z(L1)=U1
Z (L2)=U2
GO TO 80

60 Z(L1)=U3
Z(L2)=U1
Z (L3)=U2
GO TO 80

70 Z(L1)=U3
Z (L2)=U1

80 Z(LO+I)=2.*C1*D(I)/RS(I)
20 CONTINUE

RETURN
END
SUBROUTINE ZTOT(MT,MP,ZL,Z)

C
C ADDS THE SURF IMPEDANCE TERMS TO THE TRIDIAGONAL ELEMENTS OF
C THE BOR IMPEDANCE MATRIX Z.
C

COMPLEX ZL(700) ,Z(50000)
N=MT+MP
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MO=MT*3-2
DO 100 I=1,MP
LO=MT*N+(I-1) *N+MT
IF(I.EQ.MP) GO TO 80
KI=2
IF(I.EQ.1) KI=I
IF(I.EQ.MT) KI=3
L2= (I-1) *N+I
LI=L2-1
L3=L2+l
M=2+3* (I-2)
IF(KI.EQ.1) M=0
MI=M+ 1
M2=M+2
M3=M+3
go to (50,60,70),ki

50 Z(L2)=Z(L2)+ZL(M1)
Z(L3)=Z(L3)+ZL(M2)
GO TO 80

60 Z(Ll)=Z(Ll)+ZL(Ml)
Z (L2)=Z (L2)+ZL(M2)
Z (L3)=Z (L3)+ZL(M3)
GO TO 80

70 Z(Ll)=Z(LI)+ZL(MI)
Z(L2)=Z(L2)+ZL(M2)

80 Z(LO+I)=Z(LO+I)+ZL(MO+I)
100 CONTINUE

RETURN
END
subroutine interp(u,v,x,y,nn)

"c program to interpolate linearly between arrays of x and y
c values (with dimensions nn). u is specified and v is returned
"c uniform sampling in x (the ordinate) is assumed.

dimension x(nn) ,y(nn)
delx=x(2) -x(1)
nl=int (u/delx) +1
n2=nl+l
dely=y(n2) -y(nl)
sgn=sign(l.,dely)
dely=abs (dely)
alpha=u-x (ni)
zeta=dely*alpha/delx
v=y (nl) +sgn*zeta
return
end
SUBROUTINE PLANEW(NWIRES,NW1,NW2,NP1,NP2,XH,YH,ZH,

* THRPHR,R)
C
C PLANE WAVE EXCITATION VECTOR ELEMENTS FOR WIRE AND
C ATTACHMENT SEGMENT. INCIDENCE DIRECTION IS (THR,PHR).
C - ONLY ONE INCIDENCE ANGLE PER CALL
C - WIRE DOES NOT HAVE TO LIE IN THE Z=0 PLANE
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C
COMPLEX UO,AA,BBC,R(400) ,CEXP,EXP,FI1,F12,SI,DI,CMPLX
DIMENSION ZH(400),NS(4),NW1(4),NW2(4),XH(400),YH(400)
MP2=NP2-1
MT2=NP2 -2
MT2 2=2 *M2
DO 5 L=1l,NWIRES

5 NS(L)=NW2(L)-NW1(L)+1
UO=(O. ,O.)
CC=COS (THR)
SS=SIN (THR)
CP=-COS (PHR)
SP=-SIN (PHR)
UP=-SS*CP
vP=-SS*SP
WP=-CC
DO 12 IP=1l,MP2
II=IP+NP1
1=11+1
ZS=.5*(ZH(I)+ZH(II))
XS=.5*(XH(I)+XHi(II))
YS=. 5* (YH (I) +YH (II) )
DX=XH (I) -XH (I I)
DY=YH (I) -YH (I I)
D1=SQRT (DX**2+DY**2)
SU=DY/ Dl
CU=DX/D1

C FOR WIRES IN PERPENDICULAR TO Z SIN(V)=1 AND COS(V)=O
sv=1. 0
CV=O.0

C
C WIRE SEGMENT CALCULATIONS
C

A=UP*CU+VP*SU
B=-UP*XS+VP*YS+WP* ZS
C=CMPLX(O. ,A)
EXP=-CEXP(CMPLX(0. ,B))
AA=CC* (CU*CP+SU*SP)
BB=SU*CP-SP*CU
PSI=D1*A/2.
IF(PSI.NE.0.) GO TO 60
SINC=l.
GO TO 61

60 SINC=SIN(PSI)/PSI
61 COSP=COS(PSI)

FI1=SINC*D1*EXP/2.
F12=(O. ,0.)
IF(ABS(A).LT.1.E-4) GO TO 62
CSP=-COSP-SINC
IF(ABS(CSP).LT.l.E-4) GO TO 62
F12=EXP/C*CSP

62 CONTINUE
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SI=FI1+F12
DI=FI1-F12

C
C R-WIRE-THETA
C

IF(IP.EQ.MP2) GO TO 10
R(IP) =AA*SI
R (IP+MT2) =BB*SI

10 CONTINUE
C
C R-WIRE-PHI
C

14 IF(IP.EQ.1) GO TO 12
R(IP-1) =R(IP-1) +AA*DI
R(IP-1+MT2) =R(IP-1+MT2) +BB*DI

12 CONTINUE
C
C WRITE OVER DUMMY WIRE SEGMENTS
C

c IF(NWIRES.EQ.1) GO TO 210
c NSPTS=O
c DO 209 L=1l,NWIRES-1
c NSPTS=NSPTS+NS(L)
c IN=NSPTS-2
c R(IN+1)=UO
c R(IN+2)=UO
c IN=IN+MT2
c R(IN+1)=UO
c R(IN+2)=UO
c 209 CONTINUE

210 RETURN
END
SUBROUTINE PLANES(M1,NPO,NP1,NP2,NT,RH,ZH,XT,AT,THR,R)

C
C PLANE WAVE EXCITATION VECTOR FOR BOR ELEMENTS.
C NO CHANGE FROM HARRINGTON'S ORIGINAL PROGRAM OTHER THAN
C
C * ONLY ONE MODE PER CALL *
C

COMPLEX R(1000),U,U1,UA,UB,FA(50),FB(50),F2A,F2B,F1A,F1B
COMPLEX U2,U3,U4,U5,CMPLX
DIMENSION RH(400) ,ZH(400) ,XT(4) ,AT(4)
DIMENSION R2(4) ,Z2(4) ,BJ(5000)
U= (0., 1.)
U1=3. 141593*U**M1
NF=1
M2=M1
NP=-NPO+NP1+NP2
NRF=NPO+NP1
MP=NP- 1
MT=MP- 1
N=MT+MP
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N2=2*N
CC=COS (THR)
SS=SIN (THR)
M3 =M1+1
M4=M2+3
IF(M1.EQ.O) M3=2
H5=M1+ 2
M6=M2+2
DO 12 IP=1l,MP
K2=IP
I=Ip+1
DR=.5*(RH(I) -RH(IP))
DZ=.5* (ZH(I)-ZH(IP))
D1=SQRT (DR*DR+DZ*DZ)
R1=.25*(RH(I)+RH(IP))
IF(ABS (Rl) .LT.1.E-5) R1=1.
Zl=.5*(ZH(I)+ZH(IP))
DR=.5*DR
D2 =DR/RI
DO 13 L=1l,NT
R2 (L) =R1+DR*XT (L)
Z2 (L)=Z1+DZ*XT(L)

13 CONTINUE
D3 =DR* CC
D4=-DZ*SS
D5=Dl*CC
DO 23 M=M3,M4
FA(M)=0.
FB(M)=O.

23 CONTINUE
DO 15 L=1l,NT
X=SS*R2 (L)
IF(X.GT..5E-7) GO TO 19
DO 20 H=M3,M4
BJ(H) =0.

20 CONTINUE
BJ (2)= 1.
s=1.
GO TO 18

19 M=2.8*X+14.-2./X
IF(X.LT. .5) M=11.8+ALOG1O(X)
IF(M.LT.M4) M=M4
BJ(M)=0.
JM=M-1
BJ(JM)=l.
DO 16 J=4,M
J2-JM
JM=JM- 1
J1=JM-1
BJ (JM) =J1/X*BJ (J2) -BJ (JM+2)

16 CONTINUE
s=0.
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IF(H.LE.4) GO TO 24
DO 17 J=4,M,2
S=S+BJ (J)

17 CONTINUE
24 S=BJ(2)+2.*S
18 ARG=Z2(L)*CC

UA=AT(L)/S*CMPLX(COS(ARG) ,SIN(ARG))
UB=-XT(L) *UA
DO 25 M=H3,M4
FA(M) =BJ(M) *UA+FA (H)
FB (H)=BJ (H)*UB+FB (H)

25 CONTINUE
15 CONTINUE

IF(M1.NE.O) GO TO 26
FA(1)=- FA(3)
FB(1)=- FB(3)

26 UA=U1
DO 27 M=M5,M6
M7=M-1
M8=M+1
F2A=UA* (FA(M8)+FA(M7))
F2B=-UA*(FB(M8)+FB(M7))
UB=-U*UA
F1A=UB* (FA(M8) -FA(H7))
F1B=-UB* (FB(M8) -FB(M7))
U4=D4 *UA
U2=D3*FIA+U4*FA (H)
U3=D3 *F1B+U4*FB (H)
U4 =DR* F2A
U5=DR* F2 B
Kl=K2-1
K4=K1+N
K5=K2 +N
R(K2+HT) =-D5* (F2A+fD2*F2B)
R(K5+MT) =D1* (FA+D2*F1B)
IF(IP.EQ.1) GO TO 21
R(K1)=R(K1)+U2-U3
R(K4)=R(K4)+U4-U5
IF(IP.EQ.MP) GO TO 22

21 R(K2)=U2+U3
R(K5) =U4+U5

22 K2=K2+N2
UA=UB

27 CONTINUE
12 CONTINUE

c R(NPO-1)=(O.,O.)
c R(NPO)=(O.,O.)
c R(NPO+HT)=(O.,O.)
c R(NRF-1)=(O.,O.)
c R (NRF) =(0. ,0. )
c R (NRF+MT) =(0., .)

99 RETURN
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END
SUBROUTINE ZMATSS(M1,M2 ,NPO,NP1,NP2,NPHI
*NT,RH, ZH,X,A,XT,AT, Z)

C
C *****THREE DETACHED SURFACES******
C SURFACE-SURFACE IMPEDANCE ELEMENTS. REMAINS UNCHANGED FROM
C HARRINGTON EXCEPT MULTIPLE SURFACES ARE PERMITTED. THE FIRST
c SURFACE HAS NPO POINTS, THE SECOND NP1 POINTS AND THE THIRD NP2.
C NPO PARABOLOID PTS; NP1 HYPERBOLOID PTS; NP2 CAVITY PTS.

* C
COMPLEX Z(50000) ,U1,U2,U3,U4,U5,U6,U7,U8,U9,UA,UB
COMPLEX G6A(4) ,G4B(4) ,G5B(4) ,G6B(4) ,H4A,H5A,H6A,H4B,H5B
COMPLEX CMPLX,H6B,UC,UD,GA(400),GB(400),G4A(4),G5A(4)
DIMENSION RH(400),ZH(400),X(400),A(400),AT(4),RS(400),ZS(400)
DIMENSION D(400) ,DR(400) ,DZ(400) ,DM(400) ,C2 (400)
DIMENSION C4(400),C5(400),C6(400),Z7(4),R7(4),Z8(4),R8(4)
DIMENSION XT(4),Z2(4),C3(400),R2(4)
CT=2.
CP=. 1
NP=-NPO+NP1+NP2
NRF=NPO+NP1
DO 10 I=2,NP
12=I-1
RS(12)=.5*(RH(I)+RH(I2))
ZS (12) =.5* (ZH (I) +ZH(I2) )
D1=.5*(RH(I)-RH(I2))
D2=.5* (ZH(I) -ZH(I2))
D (12) =SQRT (D1*D1+D2*D2)
DR(12)=Dl
DZ (12)=D2
DM(12)=D(I2)/RS(I2)

10 CONTINUE
M3=M2 -M1+ 1
M4=Ml-1
P12=1.570796
DO 11 K=1,NPHI
PH=P12*(X(K)+1.)
C2 (K) =PH*PH
SN=SIN ( .5*PH)
C3 (K) =4. *SN*SN
Al=P12 *A (K)
D4=.5*Al*C3 (K)
D5=Al*COS (PH)
D6=A1*SIN (PH)
M5=K
DO 29 M=1,M3
PHM= (M4+M) *PH
A2=COS (PHM)
C4 (M5) =D4 *A2
CS (M5) =D5*A2
C6 (M5) =D6*SIN(PHM)
M5=M5+NPHI
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29 CONTINUE
11 CONTINUE

MP=-NP- 1
HT=MP- 1
N=MT+MP
N2N=MT*N
N2=N*N
U1=(O. ,.5)
U2=(O. ,2.)
JN=-1-N
DO 15 JQ=1,MP
KQ=2
IF(JQ.EQ.1) KQ=1
IF(JQ.EQ.MP) KQ=3
R1=RS (JQ)
Z1=ZS (JQ)
D1=D(JQ)
D2=DR (JQ)
D3=DZ (JQ)
D4 =D2/R1
D5=DM (JQ)
SV=D2/ Dl
CV=D3/D1
T6=CT*D1
T62=T6+D1
T62=T62*T62
R6=CP*R1
R62=R6*R6
DO 12 L=1l,NT
R2 (L) =R1+D2 *XT (L)
Z2 (L)=Z1+D3*XT(L)

12 CONTINUE
U3=D2*U1
U4=D3 *Ul
DO 16 IP=1,MP
R3=RS (IP)
Z3=ZS (IP)
R4=R1-R3
Z4=Zl-Z3
FM=R4*SV+Z4*CV
PHM=ABS (FM)
PH=ABS (R4*CV-Z4*SV)
D6=PH
IF(PHM.LE.D1) GO TO 26
D6=PHM-D1
D6=SQRT (D6*D6+PH*PH)

26 IF(IP.EQ.JQ) GO TO 27
KP--l
IF(T6.GT.D6) KP=2
IF(R6.GT.D6) KP=3
GO TO 28

*27 KP=4
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28 GO TO (41,42,41,42),KP
42 DO 40 L=1l,NT

D7=R2 (L) -R3
DB=Z2 (L) -Z3
Z7 (L) =D7*D7+D8*D8
R7 (L) =R3*R2 (L)
ZB (L) =. 25*Z7 (L)
RB (L)=.25*R7 (L)

40 CONTINUE
Z4=R4*R4+Z4*Z4
R4=R3 *Rl
R5=. 5*R3*SV
DO 33 R=1,NPHI
A1=C3 (K)
RR=Z4+R4 *A1
UA=0.
UB=0.
IF(RR.LT.T62) GO TO 34
DO 35 L=1I,NT
R=SQRT(Z7 (L)+R7 (L) *A1)
SN=-SIN (R)
CS=COS (R)
UC=AT (L) /R*CMPLX (CS, SN)
UA=UA+UC
UB=XT(L) *UC+UB

35 CONTINUE
GO TO 36

34 DO 37 L=1I,NT
R=SQRT(ZB (L)+R8 CL) *A1)
SN=-SIN (R)
CS=COS (R)
UC=AT (L) /R*SN*CMPLX (-SN, CS)
UA=UA+UC
UB--XT (L) *UC+UB

37 CONTINUE
A2=FM+R5*Al
D9=RR-A2 *A2
R=ABS (A2)
D7=R-D1
DS=R+Dl
D6=SQRT (D8*DB+D9)
R=SQRT(D7*D7+D9)
IF(D7.GE.0.) GO TO 38
A1=ALOG( (D8+D6) *(-D7+R)/D9)/D1
GO TO 39

38 A1=ALOG((D8+D6)/(D7+R) )/D1
39 UA=A1+UA

UB=-A2* (4./ (D6+R) -A1)/D1+UB
36 GA(K)=UA

GB(K)=UB
33 CONTINUE

K1=0
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DO 45 M=1,M3
H4A-O.
H5A=O.
H6A=O.
H4B--O.
H5B=-O.
H6B=-O.
DO 46 K=1,NPHI
K1=K1+1
D6=C4 (Ki)
D7=C5 (Ki)
D8=C6 (Ki)
UA=GA (K)
UB=-GB (K)
H4A=D6 *UA+H4A
H5A=D7 *UA+H5A
H6A=D8 *UA+H6A
H4 B=D6 *UB+H4 B
H5B=D7 *UB+H5B
H6B=D8 *UB+H6B

46 CONTINUE
G4A (N)=H4A
G5A (M)=H5A
G6A (H)=H6A
G4B (M)=H4B
G5B (M)=H5B
G6B (H)=H6B

45 CONTINUE
IF(KP.NE.4) GO TO 47
A2=D1/ (P12*R1)
D6=2 ./D1
D8=0.
DO 63 K=1,NPHI
A1=R4*C2 (K)
R=R4*C3 (K)
IF(R.LT.T62) GO TO 64
D7=0.
DO 65 L=1l,NT
D7=D7+AT (L) /SQRT (Z7 (L) +A1)

65 CONTINUE
GO TO 66

64 A1=A2/ (X (K) +1.)
D7=D6*ALOG (A1+SQRT (1. +A1*A1))

66 D8=D8+A(K)*D7
63 CONTINUE

A1=. 5*A2
A2=1./A1
D8=-P-12*D8+2./R1*(BLOG(A2)+A2*BLOG(A1))
DO 67 M=1,H3
GSA (M) =D8+G5A (M)

67 CONTINUE
GO TO 47
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41 DO 25 M=1,M3
G4A(M)0O.
G5A(M)0O.
G6A(M)0O.
G4B(H) =0.
G5B(M)0O.
G6B(M)0O.

25 CONTINUE
DO 13 L=1,NT
A1=R2 (L)
R4=A1-R3
Z4=Z2 (L) -Z3
Z4=R4*R4+Z4*Z4
R4=R3 *A1
DO 17 K=1,NPHI
R=SQRT(Z4+R4*C3 (K))
SN=-SIN (R)
CS=COS (R)
GA(K) =CMPLX(CSSN)/R

17 CONTINUE
D6=0.
IF(R62.LE.Z4) GO TO 51
DO 62 K=1,NPHI
D6=D6+A(K)/SQRT(Z4+R4*C2 (K))

62 CONTINUE
Z4=3 .141593/SQRT(Z4/R4)
D6=-PI2*D6+ALOG(Z4+SQRT(1.+Z4*Z4) )/SQRT(R4)

51 A1=AT(L)
A2=XT(L) *A1
K1=0
DO 30 M=1,M3
U5=0.
U6=0.
U7=0.
DO 32 K=1,NPHI
UA=GA (K)
K1=K1+ 1
U5=C4 (Ki) *UA+U5
tJ6=C5 (Ki) *UA+U6
U7=C6 (Ki) *UA+U7

32 CONTINUE
U6=D6+U6
G4A (M)=A1*U5+G4A (H)
GSA (M) =A1*U6+G5A (N)
G6A (H)=A1*U7-I-G6A (N)
G4B(M) =A2*U5+G4B(M)
G5B (M) =A2 *U6+G5B (M)
G6B(H) =A2 *U7+G6B (N)

30 CONTINUE
13 CONTINUE
47 A1=DR(IP)

UA=Al*U3
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UB-DZ (IP) *U4
A2=D(IP)
D6=-A2 *D2
D7=D1*Al
D8=Dl*A2
JM=JN
DO 31 M=1,M3
F74=M4 +M
A1=FM4*DM (IP)
H5A=G5A (M)
H5B=-G5B (H)
H4A=G4A (H)+H5A
H4B--G4B(M) +H5B
H6A=G6A (M)
H6B=-G6B (H)
U7=UA*H5A+UB*H4A
UB=UA*H5B+UB*H4 B
U5=U7-U8
U6=U7+U8
U7=-U1*H4A
UB=D6 *H6A
U9=D6*H6B-Al*H4A
UC=D7* (H6A+D4*H6B)
UD=FM* D5 *H4A
K1=IP+JM
K2=K1+ 1
K3=K1+N
K4=K2+N
K5=K2+MT
K6=K4+MT
K7=K3+N2N
K8=K4+N2N
GO TO (18,20,19),KQ

18 Z(K6)=U8+U9
IF(IP.EQ.1) GO TO 21
Z (K3) =Z (M3)+U6-U7
Z (K7)=Z (K7)+UC-UD
IF(IP.EQ.HP) GO TO 22

21 Z(K4)=U6+U7
Z (K8) =UC+UD
GO TO 22

19 Z(K5)=Z(K5)+U8-U9
IF(IP.EQ.1) GO TO 23
Z (Ki) =Z (Ki)+U5+U7
Z (K7) =Z (K7) +UC-UD
IF(IP.EQ.MP) GO TO 22

23 Z(K2)=Z(K2)-iU5-U7
Z (K8) =UC+UD
GO TO 22

20 Z(K5)=Z(K5)-iU8-U9
Z (K6) -=UB+U9
IF(IP.EQ.1) GO TO 24
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Z (Ki) =Z(Ki) +U5+U7
Z(K3)=Z (K3)+U6-U7
Z (K7) =Z (K7) +UC-UD
IF(IP.EQ.MP) GO TO 22

24 Z(K2)=Z(K2)+U5-U7
Z (K4) =U6+U7
Z (KB) =UC+UD

22 Z (K8+MT) =U2* (D8* (H5A+D4*H5B) -A1*UD)
JM=JM+N2

31 CONTINUE
16 CONTINUE

JN=JN+N
15 CONTINUE

C
C THREE MULTIPLE BODIES USING THE SIMPLIFIED APPROACH
C NULL OUT ROWS AND COLS FOR THE FIRST DUMMY SEGMENT
C

DO 100 LSS=1,N
LS=LS S-i
Z(LS*N+NPO)=(0. ,0.)
Z(LS*N+NPO-1)=(0. ,0.)

100 Z(LS*N+NPO+MT)=(O.,O.)
DO 101 LS=1,N
Z ((NPO-2) *N+LS)=(0., 0.)
Z((NPO-1)*N+LS)=(O. ,0.)

101 Z((NPO-1+MT)*N+LS)=(0.,0.)
Z( (NPO-2)*N+NPO-1)=(1. 10.)

Z ((NPO-1) *N+NPO)(1. ,0.)
Z((MT+NPO-1)*N+NPO+MT)=(l. ,0.)

C
C NULL OUT ROWS AND COLS FOR THE SECOND DUMMY SEGMENT
C

DO 200 LSS=1,N
LS=LS 5-1
Z(LS*N+NRF)=(0. ,0.)
Z(LS*N+NRF-1)=(0. ,0.)

200 Z(LS*N+NRF+MT)=(0.,0.)
DO 201 LS=1,N
Z((NRF-2)*N+LS)=(0. ,0.)
Z((NRF-1)*N+LS)=(0. ,0.)

201 Z((NRF-1+MT)*N-sLS)=(0.,0.)
Z( (NRF-2) *N+NRF-1)(1. ,0.)
Z( (NRF-1) *N+NRF)(1. ,0.)
Z( (MT+NRF-1)*N-INRF+MT)=(1. ,0.)

999 RETURN
END
SUBROUTINE ZASMBO (NP1, NP2,MODESZ, ZWW)

C
C ASSEMBLES MODE INDEPENDENT BLOCKS OF Z
C

COMPLEX Z(500000) ,ZWW(10000)
MT1=NP1-2
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MP1=NP1-1
N=MT1+MP1
MT2=NP2 -2
NBLOCK=2 *MODES+1
NS=NBLOCK*N
NR=NS+MT2
NS2=NS*NR
NWW=NS2+NS
DO 10 IC=1,MT2
IC1=IC-1
DO 10 IR=1,MT2
K=NWW+IC1*NR+IR
IW=IC1*MT2+IR

10 Z(K)=ZWW(IW)
RETURN
END
SUBROUTINE ZASMBN(NP1,NP2 ,MODES,NM, Z, ZSS, ZSW)

C
C ASSEMBLES MODE DEPENDENT BLOCKS IN Z. MODES=TL #OF MODES;
C NM IS THE MODE # OF THE BLOCKS ZSS,ZSW,ZSJ. (IF NM<0 THEN
C ZSS IS OMITTED - ONLY FILLED FOR POSITIVE NM)
C

COMPLEX ZSS(50000) ,Z(500000) ,ZSW(50000)
MT1=NP1-2
MP1=NP1-1
MT2=NP2 -2
N=MP1+MT1
NBLOCK=2 *MODES+ 1
NS=NBLOCK*N
NR=NS+MT2
MT=MT1+MT2
MTN=MT *N
IF(NM.LT.O) GO TO 225

C
C ZSS BLOCKS FOR MODE NM (+ AND -FILLED IN 1 LOOP)
C

NTOP1=MODES-NM
NTOP2=NBLOCK- (NTOP1+1)
NSS2=NTOP1* (N+NR*N)
NSS1=NTOP2* (N+NR*N)
DO 200 IC=1,MP1
IC1=IC-1
DO 200 IR=1,MP1
IF(IC.GT.MT1) GO TO 100
IF(IR.GT.MT1) GO TO 50
I0=IC1*N+IR
ITT=IC1 *NR+IR
Z(ITT+NSS1)=ZSS(I0)
IF(NM.NE.O) Z(ITT+NSS2)=ZSS(I0)

50 I0=MT1+IC1*N+IR
IPT=IC1*NR+MT1+IR
Z(IPT+NSS1)= ZSS(I0)
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IF(NM.NE.0) Z(IPT+NSS2)=-ZSS(I0)
100 IF(IR.GT.MT1) GO TO 150

IO=N*MT1+IC1*N+IR
ITP=-MT1 *N+IC1 *N+IR
Z(ITP+NSS1)= ZSS(I0)
IF(NM.NE.O) Z(ITP+NSS2)=-ZSS(IO)

150 I0=N*MT1+MT1+IC1*N+IR
IPP--IC1*NR+MT1+MT1 *N+IR
Z (IPP+NSS1) =ZSS (10)

* IF(NM.NE.O) Z(IPP+NSS2)=ZSS(I0)
200 CONTINUE
225 CONTINUE
C
C ZSW AND ZWS BLOCKS
C

NTOP1=MODES+NM
NTOP2=NBLOCK- (NTOP1+1)
NSW=NTOP1 *N+NS *NR
NWS=NTOP2 *NR*N+NS
DO 250 IC=1,MT2
IC1=Ic-1
DO 250 IR=1,N
ISW=IR+IC1*NR+NSW
IWS= (IR-1) *NR+IC+NWS
IO=IC1 *N+fl
Z(ISW)=ZSW(I0)
Z (IWS)=ZSW(I0)

250 CONTINUE
RETURN
END
SUBROUTINE ZMATSW(NWIRES,NW1,NW2,NP11,NP12,NP13,
*XH,YH,RH,ZH,NT,XT,AT,NG,XG,AG,MODE,A,Z)

C
c >>>>>>>>> revised version <<<<<<<<
C
C CALCULATION OF THE SURFACE-WIRE MATRIX ELEMENTS. ATTACHMENT
C POINT NOT AT A SURFACE EDGE, BUT CAN BE ON Z AXIS (IC#1) . SURFACE
C START INDEX IS 1. TWO BORS OF LENGTHS NP11, NP12 AND NP13. WIRE
C START AND STOP POINTS ARE NW1 AND NW2.
C

COMPLEX CEXP,EXP,Z(50000) ,G5,G6,G7,CONH,F5,F6,F7
COMPLEX U,UO,PSI,TO,T1,T2,T3,ST1,ST2,ST3 ,CON,SP1,SP2 ,SP3
COMPLEX U5,U6,U7,U8,U9,CMPLX,T4,T5,T6,T7
DIMENSION RS1(400),RH(400),ZH(400),XG(400),AG(400),XT(4)
DIMENSION ZS1(400),D1(400),D(400),S(400),C(400),RS(400)
DIMENSION ZS(400),S1(400),C1(400),NW1(4),NW2(4),NS(4),AT(4)
DIMENSION XH(400),YH(400),XS1(400),YS1(400),CU(400),SU(400)
PI=3.*14159
P12=2 .*PI
NP1=NP1 1+NP12+NP13
NRF=NP1 1+NP1 2
DO 1 L=1l,NWIRES
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1 NS(L)=NW2(L)-NW1(L)+l
UO=(O. 10.)
U= (0*, 1.)

C
C DEFINE SURFACE GEOMETRY TERMS
C

MP=-NP1-1
MT=MP- 1
NROW=MP+MT
DO 5 I=2,NP1
12=I-1
RS (12) =.5* (RH (I) +RH(I2) )
ZS(12)=.5*(ZH(I)+ZH(I2))
DR=RH (I) -RH (12)
DZ=ZH(I) -ZH(12)
D(12) =SQRT(DR**2+DZ**2)
S(12)=DR/D(I2)

5 C(12)=DZ/D(I2)
C
C DEFINE WIRE GEOMETRY TERMS
C

NW=NW2 (NWIRES) -NW1 (1)
NWP=-NW+ 1
MT2 =tWP-2
DO 10 N=2,NWP
NO=N-1
I=NP 1+N
12=I -1
RSlkNo)=.5*(RH(I)+RH(I2))
ZS1(NO)=.5*(ZH(I)+ZH(12))
XS1(NO)=.5*(XH(I)+XH(I2))
YS1 ,NO)=.5*(YH(I)+YH(I2))
DX=XH(I) -XH(I2)
DY= H (I) -YH (12)
Dl (10) =SQRT(DX**2+DY**2)

C FOR WIRES PARALLEL TO THE XY PLANE SIN(V)=1 AND COS(V)=O
51 (!-0) =1.
Cl (NO) =0.
CU (4-0) =DX/D1 (NO)
SU ('"O) =DY/D1 (NO)

10 CONTINUE
CON=U/P12/2.

C INTEGRA"ING FROM 0 TO 2*PI
O1=PI
02=FI
JN=- 1-NROW

C
C SEGMENT LOOPS: q=WIRE, p=SURFACE
C

DO 100 JQ=1,NW
KQ=2
IF(JQ.EQ.1) KQ=1
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IF(JQ.EQ.NW) KQ=3
Hl=D1(JQ)/2.
ZW=ZS1 (JQ)
DO 22 IP=1l,MP
ST1=UO
ST2=UO
ST3=UO
S P1U 0
S P2 =UO
SP3 =UO
AA=S (IP) *CUJ(JQ)
BB-S (I P) * SU (JQ)
RD=RS (IP) *D1 (JQ)
DD=D(IP) *D1 (JQ)
CONH=CON*D (IP)

C
C FIRST TERM (H-INTEGRATION)
C

DO 30 I=1,NT
H=H1* XT (I)
HHD=-2 . */DlJ(JQ)
XW=XS1 (JQ) +H*CU (JQ)
YW=YS1 (JQ) +H*SU (JQ)

C
C PHI INTEGRATIONS FOR G-HAT FUNCTIONS
C

G7 =UO
G5=UO
G6=UO
DO 32 K=1,NG
PH=O1*XG (K) +02
PHM=PH* FLOAT (MODE)
XS=RS (IP) *COS (PH)
YS=RS (IP) *SIN(PH)
EXP--CEXP(CMPLX(0. ,-PHM))
RP=-SQRT ((XS-XW) **2+ (YS-YW) **2+ (ZS (IP) -ZW) **2)
PSI=CEXP(CMPLX(0. ,-RP) )/RP
F5=EXP*COS (PH) *PSI
F6=EXP*SIN(PH) *PSI
F7=EXP*PSI
G7=G7+F7*AG (K)
G5=G5+F5*AG (K)

32 G6=G6+F6*AG(K)
G7=01*G7
G5=01*G5
G6=01*G6
TO=G5*AA/4.
T1=TO*HHD
T2=G6*BB/4.
T3=T2 *HH~D
T4=G5*SU (JQ) /2.
T5=T4*HHD
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T6=-G6*CU (JQ) /2.
T7=T6*HHD
ST1=ST14-AT(I) *(TO+T2)
ST2=ST2+AT(I) *(T1+T3)
ST3=ST3+AT (I) *G7/DD
SP1=SP1+AT(I) *(T4+T6)
SP2=SP2+AT(I) *(T5+T7)
SP3=SP3+AT(I) *U*G7*FloAT(MODE)/RD

30 CONTINUE
C
C ZSW-t TERMS (K1,K2,K3,K4)
C

U5= (ST1-ST2) *CONH*Hl
U6= (ST1+ST2) *COH*IU
U7=-ST3 *CONH*H1

C
C ZSW-p TERMS (K5,K6)
C

U8=SPI*CONH*Hl
U9=(SP2+SP3) *CONH*H1
K1=IP+JN
K2=XI+1
K3=K1+NROW
K4=K2+NROW
K5=K2+MT
K6=K4+MT
GO TO (18,20,19),KQ

18 Z(K6)=U8+U9
IF(IP.EQ.1) GO TO 21
Z (K3) =Z (13) +U6-U7
IF(IP.EQ..MP) GO TO 22

21 Z(K4)=U6+U7
GO TO 22

19 Z(K5)=Z(K5)+U8-U9
IF(IP.EQ.1) GO TO 23
Z (1(1) =Z (1(1) +U5+U7
IF(IP.EQ.MP) GO TO 22

23 Z(K2)=Z(K2)+U5-U7
GO TO 22

20 Z(K5)=Z(K5)+U8-U9
Z (K6) =UB+U9
IF(IP.EQ.1) GO TO 24
Z (1() =Z (1() +U5+U7
Z (K3)=Z (K3)+U6-U7
IF(IP.EQ.MP) GO TO 22

24 Z(K2)=Z(K2)+U5-U7
Z (14) =U6+U7

22 CONTINUE
JN-JN+NROW

100 CONTINUE
C
C FOR MULTIPLE BORS WRITE OVER DUMMY SEGMENT ROWS
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C WRITE OVER ROWS AND COLS FOR FIRST DUMMY SEG.
C

DO 101 LSS=1,MT2
LS=LSS -1
Z(LS*NROW+NP11)=(0. ,0.)
Z(LS*NROW+NP11-1)=(0. ,0.)

101 Z(LS*NROW+NP11+MT)=(0. 10.)

C
C WRITE OVER ROWS AND COLS FOR SECOND DUMMY SEG.
C

DO 201 LSS=1,MT2
LS=LSS -1
Z(LS*NROW+NRF)=(0. ,O.)
Z(LS*NROW+NRF-1)=(o. ,0.)

201 Z(LS*NROW+NRF+MT)=(0.,o.)
C
C WRITE OVER DUMMY SEGMENTS IN THE CASE OF M4ULTIPE WIRES
C

IF(NWIRES.EQ.1) GO TO 292
NS PTS=0
DO 291 L=1l,NWIRES-1
NSPTS=NSPTS+NS (L)
DO 291 I=1,NROW

C
C SET COLS TO ZERO FOR STRIPS
C

IN=(NSPTS-2) *NOW
Z(IN+I)=UO
Z (IN+I+NROW) =UO

291 CONTINUE
292 RETURN

END
SUBROUTINE ZMATWW(NWIRES,NW1,NW2,XH,YH,RH,ZH,NT,XT,AT,A, Z)

C
C *** MODS FOR DIPOLE -- RECTANGULAR COORDINATES ARE SENT OVER**
C COMPUTE MATRIX ELEMENTS FOR MULTIPLE WIRES USING GLISSON METHOD
C NWIRES= # OF WIRES; NW1(I),NW2(I) ARE START AND STOP POINTS.
C &&&&& WIRES NEED NOT BE IN THE Z=0 PLANE &&&&&
C

COMPLEX CEXP,Z(10000) ,CON,CMPLX
COMPLEX U,UO,PSI,SUM1,SUM2,SUM3,U5,U6,U7
DIMENSION RH(400),ZH(400),XT(4),AT(4),XH(400),YH(400)
DIMENSION D1(400) ,S1(400) ,C1(400)
DIMENSION NW1(4),NW2(4),NS(4),XS1(400),YS1(400),ZS1(400)
DIMENSION CU(400) ,SU(400)
PI=3.*141592
P12=2. *PI
PD2=PI/2.
UO=(O. ,0.)
U= (0., 1.)

C
C DEFINE GEOMETRY TERMS FOR THE WIRE. XH,YH,RH,ZH ARE ALL KNOWNS.
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C
DO 5 L=1l,NWIRES

5 NS(L)=NW2(L)-NW1(L)+1
NS1=NW2 (NWIRES) -NW1 (1)
NPS=NS1+1
DO 10 N=2,NPS
NO=N-1
I=NW (1) +N-1
12=I-1
XS1(NO)=.5*(XH(I)+XH(I2))
YS1 (NO) =.5* (YH (I) +YH (12) )
ZS1 (NO) =.5* (ZH (I) +ZH(I2) )
DX=XH(I) -XH(12)
DY=YH(I) -YH(12)
Dl (NO) =SQRT (DX**2+DY**2)
CU (NO) =DX/Dl (NO)
SU (NO) =DY/D1 (NO)
SI (NO) =1 0
Cl (NO) =0 0

10 CONTINUE
NROW=NS1-1
JN=- 1-NROW
DO 500 JQ=l,NSl
KQ=2
IF(JQ.EQ.l) KQ=1
IF(JQ.EQ.NS1) KQ=3
Q1=Dl (JQ) /2.
DO 22 IP--i,NSI
LQ=O
IF(IP.EQ.JQ) LQ=1
CON=D1 (IP)/4 ./PI*U
SUMl=Uo
SUM2 =UO
SUM3=UO
AA=CU(IP) *CU(JQ)+SU(IP) *SU(JQ)

C
C H INTEGRATION -- SUBTRACT OUT SINGULARITY IF JQ=IP
C AND SAME SEGMENT (Nii=N21): DESIGNATED LQ=1
C

DO 100 I=1,NT
H=Q 1* XT (I)
IF(LQ.NE.l) GO TO 40
RP=-SQRT (H**2+A*A)
GO TO 50

40 XP=-XSl(JQ)+H*CU(JQ) *S1(JQ)
YP=YS1 (JQ) +H*SU (JQ) *S1 (JQ)
RP=-SQRT((XS1(IP)-XP)**2+(YS1(IP)-YP)**2+(ZSl(JQ)-zs1(IP) )**2)

50 PSI=CEXP(CMPLX(O. ,-RP))
c IF(LQ.NE.1) GO TO 60
c PSI=PSI-(l.,O.)

60 PSI=PSI/RP
SUM1=SUM1+PSI*AA*AT (I) /4.
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SUM2=SUM2+PSI*AA*AT(I)/2 ./D1 (JQ) *H
SUM3=SUM3+PSI*AT(I)/D1 (IP)/D1 (JQ)

100 CONTINUE
x1=0.
X2=0.
X3=0.

c IF(LQ.NE.1) GO TO 200
c DQ=D1(JQ)/2.
c SDQ=SQRT(DQ**2+A**2)
c XIO=ALOG(SDQ+DQ) -ALOG(SDQ-DQ)
c Xl=XIO*AA/4.
c X3=XIO/D1(IP)/D1(JQ)
c 200 CONTINUE

SUH1=(SUM1*Q1+X1) *CON
SUM2= (SUM2*Q1+X2) *CON
SUM3=(SUM3*Q1+X3) *CON
U5=SUN1 -SUM2
U6=SUM1+STJM2
U7 =-SUM3
Kl=IP+JN
K2=Kl+l
K3=K1+NROW
K4=K2+NROW
GO TO (18,20,19),KQ

18 CONTINUE
IF(IP.EQ.1) GO TO 21
Z(K3)=Z(K3)+U6-U7
IF(IP.EQ.NS1) GO TO 22

21 Z(K4)=U6+U7
GO TO 22

19 CONTINUE
IF(IP.EQ.1) GO TO 23
Z (Ki) =Z(Ki) +U5+U7
IF(IP.EQ.NS1) GO TO 22

23 Z(K2)=Z(K2)+U5-U7
GO TO 22

20 CONTINUE
IF(IP.EQ.1) GO TO 24
Z (Ki) =Z(Ki) +U5+U7
Z (K3)=Z (K3)+U6-U7
IF(IP.EQ.NS1) GO TO 22

24 Z(K2)=Z(K2)+U5-U7
Z (K4) =U6+U7

22 CONTINUE
JN=JN+NROW

500 CONTINUE
IF(NWIRES.EQ.1) GO TO 297
NSPTS=0
DO 291 L=1l,NWIRES-1
NSPTS=NSPTS+NS (L)
DO 291 I=1,NROW
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C USE THE SIMPLIFIED METHOD OF HANDLING MULTIPLE WIRES
C SET COLS TO ZERO FOR STRIPS
C

IN=(NSPTS-2) *NROW
Z(IN+I)=UO
Z (IN+I+NROW) =UO

C
C SET ROWS TO ZERO FOR STRIPS
C

IN=NSPTS-2+ (I-i) *NROW
Z (IN+I) =UO
Z (IN+2) =UO

291 CONTINUE
C
C SET DIAGONALS TO 1 FOR STRIPS
C

NSPTS=O
DO 296 L=1,NWIRES-1
NSPTS=NSPTS+NS (L)
IO=NSPTS-2
I l=IO*NROW+NSPTS-2
Z (II+l)=(l. ,0.)
Z(II+NROW+2)=(i.,O.)

296 CONTINUE
297 RETURN

END
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